
SMatch: Structural Matching for Fast Resynthesis in FPGAs

Rafael Trapani Possignolo

Dept. of Computer Science and Engineering

University of California Santa Cruz

rpossign@ucsc.edu

Jose Renau

Dept. of Computer Science and Engineering

University of California Santa Cruz

renau@ucsc.edu

ABSTRACT
Designers wait several hours to get synthesis, placement and rout-

ing results even for small changes. Commercial FPGA flows allow

for resynthesis after code changes, however, they target large code

changeswith not so effective incremental flows.We propose SMatch,
a flow for FPGAs that has a novel incremental elaboration and novel

incremental FPGA placement and routing that improves the state-

of-the-art by reducing the amount of placement and routing work

needed. We evaluate our approach against commercial FPGAs flows.

Our method finishes synthesis, placement, and routing in under 30s

for most changes of publicly available benchmarks with negligible

QoR impact, being over 20× faster than existing incremental FPGA

flows.

CCS CONCEPTS
• Hardware→ Methodologies for EDA; Logic synthesis.

KEYWORDS
Incremental Synthesis, Electronic Design Automation, Design Pro-

ductivity

ACM Reference Format:
Rafael Trapani Possignolo and Jose Renau. 2019. SMatch: Structural Match-

ing for Fast Resynthesis in FPGAs. In The 56th Annual Design Automation
Conference 2019 (DAC ’19), June 2–6, 2019, Las Vegas, NV, USA. ACM, New

York, NY, USA, 6 pages. https://doi.org/10.1145/3316781.3317912

1 INTRODUCTION
Engineers typically wait several hours for synthesis, placement,

and routing. During timing closure and functional bug fixes project

phases, this is done for relatively small changes. Incremental flows

in commercial FPGA [2, 22] try to cut the time to generate an

FPGA bitstream; however, those flows sacrifice runtime to guar-

antee same levels of Quality of Results (QoR) compared to a full

synthesis, placement, and routing. Incremental flows are especially

interesting for FPGAs on emulation platforms like Strober [12],

where short implementation time could reduce the overheads in-

volved in programming FPGAs during the evaluation of multiple

similar RTLs, with negligible QoR impacts.

There is an important contrast of FPGA design with modern soft-

ware engineering techniques that advocate for agile development

cycles, even with live environments. Recently, LiveSynth proposed a

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

DAC ’19, June 2–6, 2019, Las Vegas, NV, USA
© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-6725-7/19/06. . . $15.00

https://doi.org/10.1145/3316781.3317912

workflow that triggers logic synthesis frequently for small changes

and provides results in just a few seconds [18] for ASICs. A “live”

flow for hardware can largely improve designers’ productivity.

However, that approach only deals with the first step (synthesis),

whereas placement and routing usually dominate the total time. In a

quick evaluation with the Anubis [17] benchmarks, the commercial

FPGA flows either had approximately the same time to perform

synthesis, placement, and routing, or placement and routing take

individually more time than synthesis. This means that placement

and routing are the major runtime bottleneck in digital design flows.

This paper presents has three main contributions: (1) SMatch, a
technique that leverages the netlist structure to speedup resynthesis

in FPGAs; (2) a simple method for incremental elaboration that can

be integrated with existing flows; and (3) an improved flow to

reduce area overheads. The result is the first incremental flow that

mixes logic and physical synthesis for faster synthesis results.

Briefly, SMatch aims to reduce the amount of LUTs that need to

be placed and routed after a change is made in the code. Instead

of running placement and routing for the whole modified portion

of the circuit, SMatch analyses the netlist structure, regardless of

functionality, to re-use existing placement and routing information

whenever the structure of the netlist is unchanged. Then, placement

and routing are applied to a smaller portion of the circuit.

Although theoretically this could be applied to ASIC synthesis,

this novel technique is ideal for FPGAs, where LUTs have fixed

placement and routing resources are also fixed. Changing the logic

implemented by a LUT is simple and as long as the connections are

the same, the final placement and routing should be the same, or at

least very similar (depending on both the criticality of the path and

the utilization of the region).

Incremental elaboration is not a novel problem. In software de-

velopment, fine grain parser improves runtime for compilation [20].

The techniques are not directly applicable to RTL, however RTL

elaboration is based on files changed. This is prohibitive for a live

flow in single file generated RTL, like those generated by [4]. The

proposed flow perform a module-based partitioning even in single

file settings.

Our results show that our approach can be applied on commercial

flows, and it is 5 − 21× faster than an commercial incremental flow,

or 2× faster than the current state-of-the-art flow, LiveSynth, on
average. SMatch is able to finish synthesis placement and routing in

less than 30 seconds for 70% of the changes in the Anubis benchmark

suite [17]. SMatch is faster than previous approaches in most of the

cases, but it is never slower. We also note a slight degradation in

QoR but not statistically distinguishable than previous approaches.

2 RELATEDWORK
Incremental synthesis tools are by no means new. The first incre-

mental flow was reported over three decades ago [11], with the goal

to incrementally calculate timing in a netlist. Although manual, the

https://doi.org/10.1145/3316781.3317912
https://doi.org/10.1145/3316781.3317912

DAC ’19, June 2–6, 2019, Las Vegas, NV, USA Rafael Trapani Possignolo and Jose Renau

process was very similar in effect to what happens in incremental

timing analyses [10, 13], where an initial solution is fully com-

puted before changes are done in the netlist and the new solution

is rapidly calculated using the initial results.

Incremental flows for synthesis have been proposed. Early [8]

and still widely used [2] flows rely on pre-partition of the design,

either manually or automatically. Each partition is independently

synthesized, placed, and routed, and then the overall circuit is

connected together. When changes are made, only the affected

partitions are re-synthesized, placed, and routed, reducing the total

time. However, the QoR is heavily dependent on the partitioning,

and there does not seem to be away of predictingwhich partitioning

method is the ideal short of trying multiple partitioning strategies.

Traditional ECO approaches [7, 15] can also be classified as

incremental synthesis, but the main goal of ECO flows is to reduce

the amount of disturbance to an existing mask, usually late in the

design process where it is costly to change the design. Therefore, the

algorithms and methods used are well suited to reduce the amount

of cells changed, wire re-routed and so forth, and not necessarily

to keep overall quality and speed [5].

Post-synthesis partitioning methods [6, 18] first synthesize the

design and then find suited partitions. Because these methods do

not arbitrarily decide where to partition before synthesis, they have

the advantage of minimizing QoR degradation. LLIR [6] removes

the affected region from the synthesized netlist and replaces it with

an unsynthesized netlist and synthesis started. This is faster than a

regular synthesis because most of the design is already mapped and

optimized and only a small portion requires work. LiveSynth [18]

takes a different approach that synthesizes only the modified region,

and then merges the netlists. If a critical path is hit, the neighbor

region is also included. This type of methodology go hand-in-hand

with revision control and code repository techniques that are finally

becoming popular in hardware design. Partitioning can leverage

an older revision of the code and be updated regularly depending

on the rate of changes in the codebase.

Our approach is most similar to LiveSynth, but instead of fully

removing the affected region, which requires placing and routing

the region fully, we identify structurally matching regions and

leverage placement and routing for them. Any non-matching in the

original netlist is removed from the design and any new cell that is

not matched is inserted, placed and routed.

3 STRUCTURAL MATCHING
In this section, we describe the key observations made that enable

us to leverage the netlist structure matching to perform resynthesis,

then we discuss how to handle retiming and recycling. We also

discuss how we leverage incremental synthesis to limit the size

of the region where our technique needs to be applied and finally

present the final flow.

3.1 Structural matching of netlists
SMatch is based on two key observations: 1) placement and routing

are agnostic to logic function and only depend on netlist structure

and the physical dimensions of its components, 2) in FPGAs, the

elements of a netlist can only be a handful of types, and thus there

is a large number of equal objects in the netlist.

From the first observation, it is possible to conclude that struc-

turally similar netlists will be placed and routed in similar ways.

At this point, it is important to recognize that small variations in a

netlist can cause important variations in the optimal result of place-

ment and routing. However, modern incremental synthesis allows

small degradations of QoR. Then, re-using an existing placement

and routing will most likely yield similar QoR results.

In general, this could be applied to any netlist. However, for ASIC

netlists, the standard cell libraries are usually rich in types and sizes

of cells, and also, macros are often used to implement specific

logic functions, such as arithmetic, which introduce heterogeneity

to the netlist. This makes our second key observation useful. In

FPGAs, there are only a few types of cells. Since LUTs with same

number of inputs are physically equivalent, it is perfectly plausible

to change the logic implemented by a LUT without the need to re-

place and re-route it, as long as the physical and logical connections

with adjacent LUTs are unchanged. Since not all LUTs will be

matched, remaining LUTs need to be placed and routed following

conventional place and route flow.

Therefore, the main challenge is to find the largest structurally

matching region after a change is introduced to the design. This

process is illustrated in Figure 1, for simplicity and without loss

of generality, we consider LUTs with two inputs, however the

method is trivially extended to any number of input bits. The left

figure shows an example of an initial netlist. Each LUT is named

LUT_X with a unique ID, the function implemented by each LUT

is indicated by a unique name. In the middle figure, the change

added only affected the final function implemented by a single LUT,

namely LUT_1, from f1 to д1. A regular flow would run placement

and routing for all the LUTs in the design. SMatch proposes to not

run placement and routing for any LUTs, and simply update the

function implemented by LUT_1. Then, in the rightmost figure,

the change made introduced an extra LUT, LUT_4. Since this is a
new LUT, it will clearly need to be placed and routed. However,

we note that the inputs for LUT_3 also changed, since it originally

came from an input, but now comes from another LUT. Therefore,

LUT_3 will also be placed and routed. LUT_1, however, also had its
functionality changed, but will not require place and route, since

its inputs and outputs did not change. One could argue that since

LUT_3 will be most likely placed in a different position, this could

affect the ideal placement for LUT_1, thus it should also be replaced.
Although this is a valid observation, our results show that this was

not necessary to maintain the QoR level.

Since this is a structural pass over both the netlists, it can be

performed in linear time with the size of block considered. The

method is explained in Algorithm 1. In the first loop (lines 5 to 17),

candidate equivalent LUTs are found between the original design

and the newly synthesized netlist. Since output are fixed and each

net has a single driver, there is only one possible candidate LUT

for the output nets. Then, for an arbitrary LUT throughout the

netlist, we only consider the LUTs from the same input, that is, if

the functionality is still the same, but the inputs are in a different

order, the LUTwill be marked as not equivalent. Then, in the second

loop (lines 18 to 24), we verify that all the LUTs that were still not

marked as not equivalent, have the same set (and order of inputs),

otherwise the LUT is marked for placement and routing. It would

be technically possible to allow flipped inputs, but this is left as

future work.

After SMatch, matching LUTs have its functionality updated, and

any additional LUT is placed and routed using the conventional

SMatch: Structural Matching for Fast Resynthesis in FPGAs DAC ’19, June 2–6, 2019, Las Vegas, NV, USA

LUT_0
func: f0(in0, in1)

LUT_1
func: f1(in0, in1)

LUT_2
func: f2(in0, in1)

LUT_3
func: f3(in0, in1)

LUT_0
func: f0(in0, in1)

LUT_1
func: g1(in0, in1)

LUT_2
func: f2(in0, in1)

LUT_3
func: f3(in0, in1)

(a) Original Netlist (b) Updated Function (c) Extra LUT

LUT_0
func: f0(in0, in1)

LUT_1
func: g1(in0, in1)

LUT_2
func: f2(in0, in1)

LUT_3
func: f3(in0, in1)LUT_4

func: g4(in0, in1)

Figure 1: After synthesis of modified cones, some LUTs are structurally equivalent between the original andmodified netlists.
SMatch leverages that to reduce the amount of work needed to do during placement and routing.

place and route tools available in the flow. Any LUT that is no longer

used in the new implementation of the circuit should be removed

and made available before placement and routing of remaining

LUTs, since it will open up space for new LUTs to be placed, which

can improve QoR.

Algorithm 1 SMatch algorithm

1: procedure smatch(new_gates, old_gates)
2: candidates← map()

3: matches← ∅
4: no_equiv← ∅
5: for all BFS from outputs(new_gates) do
6: current← BFS.next

7: if is-output(current) then
8: can← same_output(old_gates)

9: else
10: can← fan-in(candidates[fan-out(current)])

11: end if
12: if candidates[current] != can then
13: no_equiv += current

14: else
15: candidates[current]← can;

16: end if
17: end for//End BFS

18: for all lut,candidate← candidates do
19: if fan-in(candidate) = candidates[fan-in(lut)] then
20: matches += lut

21: else
22: no_equiv += lut

23: end if
24: end for
25: return no_equiv, matches

26: end procedure

3.2 Handling retiming and extra registers
Retiming and Recycling can change the number and position of

registers that divide pipeline stages in a circuit to improve timing

closure [9, 14, 16]. Regardless of the exact technique used, here we

are interested in handling those changes in an efficient manner.

Moreover, moving a register or flop can be encoded as one removal

from the original location and one addition to the new location.

The key observation here is that, in FPGAs, adding and removing

flip-flops is a simple operation due to the FPGA architecture and or-

ganization. FPGA LUTs are organized in slices (Xilinx FPGAs) [22],

or equivalently ALMs (Intel FPGAs) [3]. The overall architecture of

a block varies by vendor. In Xilinx slices, there are 4 LUTs (with 2 to

6 inputs), with hardened arithmetic logic, 4 flip-flops, and by-pass

logic. LUTs can be used independently or combined into larger

(a) Xilinx Slices

DFFLUT

DFFLUT

DFFLUT

DFFLUT

A
ri

th
m

e
ti

c
C

a
rr

y
 L

o
g
ic

(b) Intel ALMs

Adder
DFF

DFF

Adder
DFF

DFF

Fracturable
LUT

Figure 2: SMatch leverages the fact that each LUT has a flip-
flop in its output that can be activated/deactivated without
impacting which routing resources will be used.

logic blocks (of up to 6 inputs). In any configuration, there is at

least one flip-flop per LUT. In Intel FPGAs, each ALM contains an

8-input fracturable LUT, two full adders and four flip-flops. The

fracturable LUT can be split into pairs of LUTs of up to 6-input.

Inputs may be shared by each partition, if the combination exceeds

the number of available inputs [1]. There is also at least one flop

per LUT, regardless of how the fracturable LUT is configured. Also,

in the case of both vendors, regardless of the flip-flop usage in each

LUT, the routing resources from the output of the slice are the same.

Figure 2 depicts a simplified version of the architecture of both

Xilinx and Intel FPGAs.

Thus, SMatch can simply add or remove flip-flops at the output

of each LUT to increase the amount of matching LUTs between

two netlists. Simply put, during the SMatch pass, registers can be

ignored, and a final pass over flops only need to enable or disable flip-

flops to match the modified netlist. In a hypothetical architecture

where there are not enough flip-flops, it would be possible to adapt

SMatch to: while doing SMatch, verify whether a flip-flop is needed

for each LUT and if so, verify if one exists, in this case, no extra

work is needed. In case a flip-flop is needed and one is not available,

the LUT is marked for placement and routing.

3.3 Incremental elaboration
In this paper, we call elaboration the process from parsing the source

Verilog to creating a non-optimized netlist. For non-parameterized

modules without defines, Verilog elaboration can be performed one

module at a time. Since defines can have cross module impacts, most

synthesis tools elaborate all the Verilog files without incremental

support. Simulation tools still seem to re-parse all the Verilog inputs,

but this is different because they do not do the second step of

elaboration that is creating a netlist.

DAC ’19, June 2–6, 2019, Las Vegas, NV, USA Rafael Trapani Possignolo and Jose Renau

For more expressive HDLs like Chisel [4], a single Verilog file

with several megabytes is generated after each code change, al-

though there is no theoretical need for it. Moreover, even if multiple

files were generated, it is often the case that spacing and comments

cause files to be changed, even though the RTL did not change. For

example, in Chisel all the assertion messages have a different text

to notify the line of code.

Our incremental parser is able to: 1) split a multi-module file

into multiple single-module files; 2) detect changes only if there

were syntactic changes to the module. We do this by running the

pre-processor, and then tokenization or lexical analysis. For each

module, we remember the tokens inside the module, and tokens

outside all the modules parsed before. We need to remember tokens

outside the module because token in define structures can have

side effects inside modules. If the token list is different from the

previous version, a full elaboration is triggered.

Since Verilog can have comments, the lexer handle nested com-

ments, and a simple pre-parser. The incremental elaboration splits

any file into modules by looking for module definitions (in Verilog:

“module” and “endmodule” keywords). Then, a parser compares

tokens of the original an modified modules, thus comments and

whitespaces are ignored. If there is a change in tokens, the module

is flagged for elaboration. Cases like rename of wires are flagged as

differences by this approach.

This limits the number of modules that need to be elaborated.

Technically, our parser would be able to detect changes in sub-

module structures and reduce even further elaboration, but that

would require changes in the underlying synthesis tool to support

sub-module elaboration, which is not done in this paper.

3.4 Partitioning the design
In theory, SMatch could be applied to an entire modified design, but

that would be inefficient because it would require the synthesis of

the whole design. Moreover, synthesizing the whole design, even

after a small change, may yield important differences in the final

netlist. Therefore, we limit the size of the netlist that needs to be

considered by leveraging incremental synthesis [6, 15, 17].

Our approach is based on functional invariant cones (cones

whose functionality does not change during synthesis) [6], which

provide limited impact on QoR and have are around a few thousand

gates [18]. A net in the design is considered a Functional Invariant

Boundary (FIB) if its functionality has not been changed during

synthesis. By definition, global input and output pins are FIBs. From

inputs and/or outputs, and traversing inwards into the design, it is

possible to find internal nets with unchanged functionality. Figure 3

shows an example where synthesis changes the implementation of

f =!(!a +bc) using a couple LUTs with two inputs. In this example,

there are two Invariant Cones: fib1 = bc and fib2 =!a·!fib1. Internal
nets in fib2 changed logic and thus are not FIBs. In this example,

each invariant boundary has a single LUT, but this is usually not

the case. FIBs are found in our flow during a setup phase that is ran

once and leveraged over multiple design changes.

Finding functionally equivalent regions requires formally prov-

ing that a region in the elaborated netlist is equivalent to a candidate

region in the synthesized netlist, which is done using logic equiva-

lency checkers. To limit the search space, we match net names and

use them as candidate equivalents. Candidate equivalent nets are

A

B
C

Y

(a) Specification (b) Implementation

A
B
C

YLUT-2
f: in0 & in1

LUT-2
f: in0 & !in1

Figure 3: SMatch uses FIBs to define incremental synthesis
regions.

HDL

FIBs

∆HDL

Incr Elab

Setup Phase Live FPGA Flow

Netlist Diff

∆Synthesis

SMatch

P&R Netlist

Elaboration

Synthesis

Place & Route

P&R Netlist

∆Place & Route

Figure 4: SMatch replaces placement and routing for a subset
of cells changed in a design during incremental synthesis.
This allows to reduce place and route time.
then formally compared for logic equivalence using standard tools.

This is slow, but is done offline, during setup.

After a code change, Netlist diff (Algorithm 2) finds which blocks,

to reduce the number of gates for SMatch, this algorithm is similar

to the one proposed by LiveSynth [18] but targeting LUTs. A single

code change can affect more than one cone since cones are over-

lapping. The original and modified netlist are traversed, starting by

each invariant boundary and propagating backward until a FIB is

found, if a difference is found the cone is marked different. Note

that this is done once per FIB in the design and thus there is no

cartesian product effect and the single gate comparison can be per-

formed in constant time, therefore, Netlist diff has linear complexity.

After Netlist diff, gates belonging to modified cones are synthesized

outside of the context of the design and the synthesized and the

original implementation of the design are fed to the SMatch step.

Algorithm 2 Netlist diff algorithm

1: procedure diff(Netlist original, Netlist modified)

2: diff_cone← Ø

3: same← same_operation(original.op,modified.op)

4: for idx дets 0; idx < modified.fanin.size; idx++ do
5: if ! is_fib(fanin(modified,idx)) then
6: diff_cone.append(fanin(modified,idx))

7: same &= & diff(fanin(original,idx), fanin(modified,idx))

8: end if
9: end for
10: return [same, diff_cone]

11: end procedure

The final flow is depicted in Figure 4. Invariant regions are found

during setup step, run once after the initial synthesis and reused

across multiple changes. When changes are being performed, the

incremental step is used. It consists of three substeps: Netlist diff,
synth, SMatch. Netlist diff compares the elaborated netlist from

the original and modified elaborated netlists. Then, these modified

SMatch: Structural Matching for Fast Resynthesis in FPGAs DAC ’19, June 2–6, 2019, Las Vegas, NV, USA

0

100

200

300

400

500

dlx
alpha
fpu
m

or1kx
or1200

R
u
n
ti

m
e
 (

s)

SMatch

dlx
alpha
fpu
m

or1kx
or1200

LiveSynth

dlx
alpha
fpu
m

or1kx
or1200

Vivado

(a) Runtime

0

20

40

60

80

100

dlx

alpha
fpu

m
or1kx

or1200

Elab
Diff

Synth
Match

Place
Route

R
u
n
ti

m
e
 %

(a) SMatch (b) LiveSynth

dlx

alpha
fpu

m
or1kx

or1200

(b) Breakdown

Figure 5: SMatch performs synthesis placement and routing in under 30s for most changes in the Anubis benchmark suite.
This is faster than the incremental flow of Vivado and LiveSynth, the state-of-the-art academic incremental flow.

cones are synthesized, with aggressive optimization goals. Finally,

during SMatch, the newly synthesized netlist is structurally com-

pared against the equivalent region of the original synthesized

netlist. Matching LUTs have their logic updated; while unmatched

LUTs are removed, replaced with newly synthesized LUTS, that are

then placed and routed. Both Netlist diff and SMatch are a simple

pass over the graph, with simple comparisons across cells in each

and therefore are linear with respect to the netlist size.

4 EVALUATION SETUP
SMatch was implemented on top of LGraph [19], in C++14, com-

piled with CLANG 5.0.0. The baseline synthesis flow is YOSYS [21]

version 0.7+312, targeting Xilinx FPGAs. Placement and Routing

were done using Xilinx Vivado 2017.2, QoR results are reported

after routing. We compare QoR with full synthesis for each change.

For the structural updates, the Vivado’s TCL interface was used.

Placement and routing for remaining cells was performed using

Vivado’s standard incremental flows. We compared the runtime of

our approach with LiveSynth [18] and Vivado incremental place-

ment and routing. The experiments were run on a server with 2

Intel(R) Xeon(R) E5-2689 CPUs at 2.60GHz, with 64GB of DDR3

memory, Arch Linux 4.3.3.

We used Anubis [17], a benchmark for incremental synthesis

that includes both RTL code for five designs (DLX, ALPHA, FPU,

MOR1KX, OR1200). Each benchmark includes around 20-30 code

changes, taken from repository commits and commented out code.

The changes vary from small localized changes (within a module)

to adding and removing ports in modules and changes to modules

that are instantiated multiple times in a design.

5 EVALUATION
Our evaluation begins by looking at the runtime of SMatch, con-
sidering synthesis, placement, and routing. Overall, SMatch has a

runtime of under 30 seconds for synthesis, placement and routing,

for most changes in the Anubis benchmark suite, with an average

of around 21s . This is around 1.6 to 2×x faster than LiveSynth, and
5 − 21× faster than the incremental mode of Vivado. Figure 5A re-

ports the runtime for each flow, for each benchmark in the Anubis

suite, averaged across all changes and broke down by step.

Most of the advantage of the approach proposed here comes

from the SMatch algorithm. It adds to the synthesis runtime com-

pared to LiveSynth, however SMatch has the advantage of reducing

placement and routing. SMatch is able to finish more than 70% of

the changes in less than 30s (versus only 31%). In Vivado, there

is no incremental synthesis step, the incremental flow uses a full

synthesis and then runs incremental placement and routing, trying

to leverage existing results for those steps. This explains the large

portion of synthesis for Vivado runtime results.

Figure 5B shows the percentage runtime breakdown for LiveSynth
and SMatch, normalized to 100%. Most of the time is spent in place-

ment and routing. Even though we minimize the amount of routing

needed, we still rely on Vivado’s placer and router, which even in

incremental mode is meant to maximize QoR at all costs. This is

true for both flows, but less so in SMatch since there are less wires

to route. The main difference between Vivado flow and the other

two is that since Vivado performs full synthesis, there is usually a

larger number of affected gates.

In SMatch, the time spent in place and route is proportionally

smaller than in LiveSynth. Placement account for only about 20%

of the runtime and routing for an average of under 50% of runtime

in the SMatch flow. To better understand where the speedups for

our technique originate, we looked into the runtime of changing

the functionality of a few hundred LUTs, changing their place-

ment, and changing their routing, which are the main tradeoffs

involved when performing SMatch. We performed a simple exper-

iment where a design was fully synthesized, placed and routed,

and then performed three operations independently, in a varying

number of LUTs: change LUT functionality, re-place LUTs, re-route

LUTs, for ≈ 100, 400, 1000 and 5000 LUTs, typical range for incre-

mental synthesis. Results are summarized in Figure 6.

We also compared the speedup of each incremental flow with

the equivalent full flow. Thus, the incremental flow on Vivado was

compared with a full synthesis, placement, and routing in Vivado.

We also compared with full synthesis in Yosys, plus placement and

routing in Vivado. SMatch is on average over 20× faster than a full

synthesis, placement, and routing. It is at least 1.6× and up to 300×

faster than full synthesis (maximum achieved when place and route

are reduced to zero during the incremental phases).

DAC ’19, June 2–6, 2019, Las Vegas, NV, USA Rafael Trapani Possignolo and Jose Renau

 0

 10

 20

 30

 40

 50

 0 1000 2000 3000 4000 5000

R
u
n
ti

m
e
 (

s)

Number of LUTs

Place Time
Route Time
LUT Update

Figure 6: Place and route LUTs is orders of magnitude more
expensive than simply update the functionality of an al-
ready placed and routed LUT. The speedups of SMatch come
from that observation.

 0

 20

 40

 60

 80

-5 -4 -3 -2 -1 0

%
 c

h
a
n
g

e
s

p
e
r

d
e
g

ra
d

a
ti

o
n

Frequency Degradation (%)

Figure 7: Inmore than 80% of the test cases StructuralMatch-
ing delivers frequency within 0.5% of a full synthesis flow.
The maximum decrease in frequency was of ≈ 5%.

The incremental mode of Vivado is only 30 − 80% faster on av-

erage than the full mode, being slower in some cases. The main

reason is that Vivado tries to maximize QoR, therefore, even the in-

cremental placement and routing available in Vivado are sometimes

as slow as the full synthesis.

We compared the QoR of SMatch against the full baseline flow

(synthesis, placement, and routing). In some cases, there was in-

crease in frequency of up to 3%, but we report those cases as 0%

degradation, since those are not due to our technique. The maxi-

mum observed decrease in frequency was of ≈ 5% and more than

80% of the changes had < 0.5% and only about 5% of the changes

had a degradation of about 1% in delay(Figure 7). The high number

of changes with no degradation is in parts due to some changes

not affecting the critical path. This small degradation in quality is

considered negligible and aligned with the goals of this work.

We also looked into area overhead. Our experiments revealed

about 5 − 13% increase in area for LiveSynth, but of only 4% for

SMatchwhen comparing with the full synthesis flow. Our methodol-

ogy creates inputs and outputs in the incremental region to preserve

logic meaning and thus prevents the replication of gates that were

used both by the incremental and the non-incremental regions.

The setup phase of SMatch includes a full synthesis, placement

and routing, and finding invariant boundaries. Synthesis, place-

ment and routing time are not considered overhead in the context

of incremental flows. The routine to find the boundaries is the only

added task. It requires a netlist after elaboration and a netlist after

synthesis. In our experiments, we noticed that finding the bound-

aries takes about twice as much as the synthesis alone. For the

benchmarks tested, that ranged from 120 to 480 seconds. However,

this overhead can be amortized over multiple incremental changes,

and thus can be considered negligible.

6 CONCLUSIONS
SMatch is the first flow to propose structurally matching LUTs and

only replacing their functionality to leverage existing placement

and routing from previous runs. SMatch is up to 20× faster than

existing incremental commercial flows with minimal QoR impact.

It is based on the fact that the same placement and routing will

yield good QoR if the structure and connections are the same.

SMatch is able to deliver most of the changes in the Anubis

benchmark suite in under 30s . Future work will include looking for

ways to further partitioning the synthesis blocks, but also at ways

to handle unmatching LUTs without the need to fully re-place and

re-route them, but with low impact in QoR.

ACKNOWLEDGMENTS
We like to thank the reviewers for their feedback on the paper. This

work was supported in part by the National Science Foundation

under grant CCF-1514284. Any opinions, findings, and conclusions

or recommendations expressed herein are those of the authors and

do not necessarily reflect the views of the NSF.

REFERENCES
[1] Altera Inc. 2006. Altera: FPGA Architecture White Paper. https://www.intel.com/

content/dam/www/programmable/us/en/pdfs/literature/wp/wp-01003.pdf. (Jul.

2006).

[2] Altera Inc. 2016. Quartus Prime Standard Edition Handbook Volume 1:

Design and Synthesis. https://www.altera.com/en_US/pdfs/literature/hb/qts/

qts-qps-handbook.pdf. (Mar 2016).

[3] Altera Inc., Intel. 2017. Cyclone V Device Overview. https://www.intel.com/

content/dam/www/programmable/us/en/pdfs/literature/hb/cyclone-v/cv_

51001.pdf. (Dec. 2017).

[4] Jonathan Bachrach, Huy Vo, Brian Richards, Yunsup Lee, Andrew Waterman,

Rimas Avižienis, JohnWawrzynek, and Krste Asanović. 2012. Chisel: constructing

hardware in a Scala embedded language. In DAC ’12.

[5] Daniel Brand, Anthony Drumm, Sandip Kundu, and Prakash Narain. 1994. Incre-

mental Synthesis. ICCAD’94.

[6] Doris Chen and Deshanand Singh. 2011. Line-level Incremental Resynthesis

Techniques for FPGAs. FPGA ’11.

[7] Jason Cong, Jie Fang, and Kei-Yong Khoo. 1999. An Implicit Connection Graph

Maze Routing Algorithm for ECO Routing. ICCAD’99.

[8] Mehrdad Eslami Dehkordi, Stephen D. Brown, and Terry Borer. 2006. Modular

Partitioning for Incremental Compilation. FPL’06.

[9] Ilya Ganusov, Henri Fraisse, Aaron Ng, Rafael T. Possignolo, and Sabya Das. 2016.

Automated Extra Pipeline Analysis of Applications Mapped to Xilinx UltraScale+

FPGAs. FPL’16.

[10] Tsung-Wei Huang and Martin D. F. Wong. 2015. OpenTimer: A high-performance

timing analysis tool. ICCAD’15.

[11] Norman P. Jouppi. 1987. Timing analysis and performance improvement of MOS

VLSI designs. TCAD’87, vol. 6.

[12] Donggyu Kim, Adam Izraelevitz, Christopher Celio, Hokeun Kim, Brian Zimmer,

Yunsup Lee, Jonathan Bachrach, and Krste Asanović. 2016. Strober: Fast and

Accurate Sample-based Energy Simulation for Arbitrary RTL. ISCA’16.

[13] Pei-Yu Lee, Iris H. R. Jiang, Cheng R. Li, Wei-Lun L. Chiu, and Yu-Ming Yang.

2015. iTimerC 2.0: Fast incremental timing and CPPR analysis. ICCAD’15.

[14] Charles E. Leiserson and James B. Saxe. 1991. Retiming Synchronous Circuitry.

Algorithmica, vol. 6.

[15] Nilesh A. Modi and Malgorzata Marek-Sadowska. 2008. ECO-Map: Technology

remapping for post-mask ECO using simulated annealing. ICCD’08.

[16] Rafael T. Possignolo, Elnaz Ebrahimi, Haven Skinner, and Jose Renau. 2016.

FluidPipelines: Elastic Circuitry meets Out-of-Order Execution. ICCD’16.

[17] Rafael T. Possignolo, Nursultan Kabylkas, and Jose Renau. 2017. Anubis: A New

Benchmark for Incremental Synthesis. IWLS’17.

[18] Rafael T. Possignolo and Jose Renau. 2017. LiveSynth: Towards an interactive

synthesis flow. DAC’17.

[19] Rafael T. Possignolo, Sheng H. Wang, Haven Skinner, and Jose Renau. 2018.

LGraph: A multilanguage open-source database. WOSET’18.

[20] TimA.Wagner. 1998. Practical Algorithms for Incremental Software Development

Environments. Ph.D. Dissertation. EECS Department, University of California,

Berkeley. http://www2.eecs.berkeley.edu/Pubs/TechRpts/1998/5885.html

[21] Clifford Wolf. 2016. Yosys Open SYnthesis Suite. http://www.clifford.at/yosys/.

[22] Xilinx Inc. 2016. VivadoDesign Suite User Guide. http://www.xilinx.com/support/

documentation/sw_manuals/xilinx2016_1/ug910-vivado-getting-started.pdf.

https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/wp/wp-01003.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/wp/wp-01003.pdf
https://www.altera.com/en_US/pdfs/literature/hb/qts/qts-qps-handbook.pdf
https://www.altera.com/en_US/pdfs/literature/hb/qts/qts-qps-handbook.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/hb/cyclone-v/cv_51001.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/hb/cyclone-v/cv_51001.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/hb/cyclone-v/cv_51001.pdf
http://www2.eecs.berkeley.edu/Pubs/TechRpts/1998/5885.html
http://www.clifford.at/yosys/
http://www.xilinx.com/support/documentation/sw_manuals/xilinx2016_1/ug910-vivado-getting-started.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx2016_1/ug910-vivado-getting-started.pdf

