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Abstract—Pipeline depth and cycle time are fixed early in
the chip design process but their impact can only be assessed
when the implementation is mostly done and changing them is
impractical. Elastic Systems are latency insensitive systems, and
allow changes in the pipeline depth late in the design process with
little design effort. Nevertheless, they have significant throughput
penalty when new stages are added in the presence of pipeline
loops. We propose Fluid Pipelines, an evolution that allows
pipeline transformations without a throughput penalty. Formally,
we introduce ‘“‘or-causality” in addition to the already existing
“and-causality” in Elastic Systems. It gives more flexibility than
previously possible at the cost of having the designer to specify
the intended behavior of the circuit. In an Out-of-Order core
benchmark, Fluid Pipelines improve the optimal energy-delay
point by shifting both performance (by 17%) and energy (by
13%). We envision a scenario where tools would be able to
generate different pipeline configurations from the same RTL
e.g., low power, high performance.

I. INTRODUCTION

Cycle time and pipeline depth are set early in design due to
their impact on other design parameters. Meeting a desired cy-
cle time requires numerous long iterations between design and
implementation. Elastic (or latency insensitive) Systems [1],
[2], an alternative to the fixed pipeline paradigm, are based
on the assumption that system correctness does not depend on
latency (number of clock cycles) between two events, but on
their order [3], [4]. This allows for stage insertion later in the
design time without breaking circuit correctness [3].

Changing the number of cycles [5], [6] is possible in Elastic
Systems but constrained by the presence of sequential loops',
which significantly reduces its applicability because complex
circuits such as processors include loops. In general, an
automated flow transforms synchronous circuitry into elastic.
Since the flow has no knowledge of the intended behavior
of the circuit, it maintains the completion order of events,
reducing the circuit throughput [3], [7]. Throughput losses can
be mitigated [5] but the whole system remains constrained by
the worst sequential loop, even when that loop is not used.

In contrast, Out-of-Order (O00) execution is omnipresent
in modern digital design and improves system throughput.
We propose Fluid Pipelines, an evolution of current Elastic
Systems that enable unordered completion. Fluid Pipelines
rely on designer annotations in the code where ordering can
be changed. Fluid Pipelines are a generalization of Elastic
Systems, since without user annotations, they behave like
Elastic Systems. User defined elasticity has been proposed [8],
and is thought to improve design methodologies [4].

ICycles in the graph representing the connections between registers, not to
be confused with program loops.

Fluid Pipelines reclaim the throughput losses from the
automated conversion [9]. The automated flow of Elastic
Systems transforms a sequential circuit to an elastic one by
inserting Fork and Join operators. In short, Fork is used when
the output of one stage forks to multiple stages, whereas Join is
used when parallel data paths reunite, therefore, the inputs of a
stage come from separate stages. The Join operator requires all
the inputs to be valid in order to proceed, i.e., the inputs to an
adder unit need to be ready at the same time for the operation
to take place. When there is no dependency between the inputs
of a block, a Merge operation is said to take place. Merge
differs from Join, because it is triggered when at least one of
the inputs is valid (i.e., it has “or-causality”), in addition, only
data from one of the inputs is consumed at each cycle. Its
dual, Branch, propagates data to only one of multiple output
paths, as opposed to sending data to all of them. This behavior
is found in many digital designs, like a Floating Point Unit
(FPU) with independent operations; or a network router, where
packages come from different inputs and propagate to a single
output.

We propose a new methodology based on Coloured Petri
Nets (CPN) [10], to determine the throughput of Elastic
Systems and Fluid Pipelines. The main objective of this
methodology is to allow a designer to quickly explore the
design space without needing to simulate every design point.
Our methodology is faster than RTL simulation for all possible
pipeline configurations. For more complex cases, such as a
full fledged O0O core, we rely on cycle accurate simulation
to determine the system performance.

Our results show that for an OoO core, Fluid Pipelines
improve the optimal energy-delay (ED) point by increasing
performance by 17% and reducing energy by 13%, when com-
pared to previous Elastic Systems. A simpler FPU benchmark
shows even better results, with improvements of up to 176% in
performance, and 5% less power consumption. By using CPN
models, it is possible to explore the Pareto frontier and select
different interesting design points, depending on a specific
application.

The contributions of our paper are:

o Fluid Pipelines (Section IV), an Elastic System evolution
that improves the Pareto frontier by avoiding the typical
throughput loss.

¢ An evaluation methodology (Section V) using Coloured
Petri Nets (CPN) for Elastic Systems and Fluid Pipelines.

¢ An evaluation (Section VII) of an OoO CPU core and an
FPU to quantify the impact of Fluid Pipelines.



II. RELATED WORK

Out-of-Order and Speculation targeting parallel execution
were evaluated in software Dataflow Networks [11]. The
authors use the same concepts we propose, but attack the task
scheduling problem in OoO cores. The flow speculates which
dependencies are true dependencies and trigger re-execution in
case of a mis-speculation. Our approach relies on the designer
knowledge of the logic to avoid such scenarios.

High Level Synthesis (HLS) [12] allows designers to focus
on functionality, while the tools perform pipelining during
scheduling [13]. HLS generates traditional synchronous cir-
cuits (i.e., not elastic), and thus scheduling is limited by
the presence of dependency loops. HLS could leverage Fluid
Pipelines to enable recycling in such loops, and are orthogonal
in that regard. In fact, this could improve HLS design time by
avoiding multiple iterations to meet timing (i.e., by adding
flops without going back to the RTL description).

Dimitrakopoulos et al. [14] explore the reduction of
buffering to support multi-threading in Elastic Systems. Their
work presents a certain amount of Out-of-Ordering on an
inter thread basis (i.e., no ordering enforced between different
threads). Our work allows full Out-of-Order execution. The
analogy would be that of a Simultaneous Multithread (SMT)
in-order core versus an Out-of-Order core.

Elastic Coarse Grain Reconfigurable Arrays (CGRAs) [15]
are an approach for coarse grain reconfigurable logic that
relies on elastic interfaces for flow control. Elastic CGRAs use
Merge and Branch operators across basic blocks (connecting
inputs and outputs from different accelerator units), while Fork
and Join are used within basic blocks (in the calculation itself).
This is conceptually similar to Fluid Pipelines, but limits where
each operator can be used.

To mitigate throughput loss in Elastic Systems, different
approaches have been proposed. The Eager Fork operator [2]
lets one of the paths start executing even when the parallel
path is not ready. Whereas, FIFOs allow for more buffering [4].
Early Evaluation [5] determines which inputs in merging paths
are actually needed (such as in a mux), and only waits for
those inputs. The next input from other paths is ignored to
maintain correctness. Nevertheless, those approaches do not
change system semantics. This becomes problematic when one
of the paths takes multiple cycles to complete. Then, back
pressure propagates to the preceding stages. Fluid Pipelines
avoid this scenario by not waiting for parallel paths unless it
is needed.

III. BACKGROUND

Functionality of an Elastic System depends on the order of
its inputs and not their arrival time [16]. Events or tokens are
meaningful data flowing through a channel. A channel is a set
of wires (i.e., bus) and its associated control signals: Valid (V)
and Stop (S)?, which determine three states: transfer (V = 1,
S =0), idle (V =0)and retry (V =1, S =1) [2].

An execution example is shown in Figure 1, where the
arrival of a valid token is represented by a number in a given
cell. When a result is produced, the token is consumed and

2Qther equivalent naming conventions have been used, e.g., Elasticity has
been expressed in terms of FIFO operation [4].

ClockCycle [ 1 2 3 4 5 6 7 8
A 0 4 3
B 1 2 3
A+B 1 6 6

Fig. 1: Elastic Systems functionality does not depend on the exact
cycle events happen, but rather on their order.
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Fig. 2: Elastic buffers are the basic construct blocks of Elastic
Systems and can be viewed as queues with a limited size.

can no longer be used. Empty cells in the table denote that
no new data has arrived in that cycle. Note that the latency
between events is arbitrary.

Elastic Buffers (EBs) are storage units that replace registers;
They include handshake signals both on the input and output
interface. Figure 2 shows the interface of an EB with input
and output control signals.

A. ReCycling and Retiming in Elastic Systems

To improve the frequency of Elastic Systems, it is possible
to move EBs across circuit blocks (Retiming) [5] (Figure 3a)
or to insert additional stages in slower paths (ReCycling) [5]
(Figure 3b). Retiming preserves the sequential behavior of the
circuit [5] and thus it can be applied mostly without penalties.

In the case of ReCycling, the throughput of a system is
limited to the sequential loop with the lowest throughput,
calculated as the number of tokens in the loop divided by
the number of EBs in the loop [7]. The throughput of a cycle
can increase with Early Evaluation depending on how often
each event occurs [7], but due to back pressure, there is still
a limit on such mitigation. ReCycling is able to reduce cycle
time, [17] but may decrease throughput in the case of stage
insertion in sequential loops [3], [S], [7].

IV. FLUID PIPELINES

Fluid Pipelines evolve the traditional Elastic Systems to
allow breaking the relative completion order. This is accom-
plished by using four types of operators: Branch, Merge, Fork
and Join operators (Figure 4). In Figure 4a, sel is a data-
dependent selection signal that indicates to which output the
data will propagate. The operators can be easily extended to
more than two inputs/outputs.

Branch is used when the datapath forks into multiple paths,
but data should propagate to only one of them. This is
controlled by the selection signal. For instance, an operation in
an FPU only needs to propagate to the appropriate functional
unit, and the selection signal is encoded by the operation bits.

a—e-efe- a-e-afe

(a) Retiming (b) ReCycling

Fig. 3: Retiming and ReCycling are used to improve the circuit
frequency, but recycling decrease the throughput of Elastic Systems
when applied to sequential loops.
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Fig. 4: Fluid Pipelines use different operators to translate the
intended functionality of a circuit and enable better design space
exploration. Branch and Merge are used when the relative order of
operations can be broken, while Forks and Joins enforce ordering.
Note the difference in the handling of “valid” and “stop” signals.

Merge operates as an arbiter: multiple senders compete for a
single channel. The sender that wins the arbitration propagates
its data. In our FPU example, a Merge would be used at the
output end of the functional units when results from each unit
are collected. Another way to think of the Merge is that it
fires when at least one of its inputs contains valid data. This is
known as disjoint or-causality and introduces the or-firing rule
to the context of Fluid Pipelines. For simplicity and without
loss of generality, the proposed implementation in Figure 4b
has simple fixed-priority, but can be replaced with any of the
existing elaborated arbitration schemes such as Round-Robin.

Merge and Branch cannot be automatically inserted like
Fork and Join, because they alter the relative order between
events. As a result, the programmer is responsible for inserting
them when needed. For example, in a complex Floating Point
Unit, just one Merge and Branch pair is needed after the
normalization and denormalization stages to indicate that the
floating operations can complete out of order. On the other
hand, the Fork and Join operators can be automatically inserted
in a similar way as the insertions performed in traditional
Elastic Systems. Merge and Branch can be performed with
direct Verilog/VHDL instantiation or just code annotations. In
this paper, we used direct Verilog annotations, and a more
automatic solution is left for our future work.

To explain how Fluid Pipelines work, let us analyze the
sample execution in the example in Figure 5, where circles
represent combinational logic, boxes represent EBs, and the
dots inside boxes represent the presence of valid data (tokens).
The paths are mutually exclusive (each operation either takes
the top or the bottom path), and the mux near the output EB
chooses the appropriate path. The instructions can take either
the bottom path or the top path in Figure 5b. The execution
traces for traditional Elastic Systems and Fluid Pipelines are
shown in Table I.

The execution order of Fluid Pipelines is altered (Table I),
note how in cycle 3, it is possible to move I3 to the bottom

ID Path

11 Bottom
12 Top

13 Bottom
14 Bottom
15 Top

16 Bottom
17 Bottom

(b) Instructions

(a) Loop Case

Fig. 5: Toy case to illustrate the Elastic vs. Fluid approaches.
Combinational logic is omitted, and Early Evaluation is assumed for
elastic. Dots represent registers with a token.

TABLE I: Sample trace for the toy case, Fluid Pipelines improve
throughput compared to Elastic Systems.

Elastic Fluid
Cycle|in TI T2 T3 B out|in TI T2 T3 B out

o/n I1
112 I1 12 Il
2113 12 I |13 12 I1
3|13 12 14 12 I3
4113 12 I5 2 14 13
5|14 I3 12 |16 IS 12
6|15 14 13 |16 I5 I6 14
7116 15 4 |17 IS5 17 16
8116 I5 I5
91|16 I5 17

10 | I7 I6 I5

11 17 16

12 17

path, while the top path is still executing. This re-ordering
is a result of the “or-firing” rule and it is done because it
was specified by the user, and not changed by the tool. In a
processor core, the reordering buffer performs this function,
while in network-on-chips, the reordering is usually not per-
formed. Since this requirement is application specific, it is left
out of this manuscript. We assume that any reordering needed
is performed in the design. In the case where order should
be maintained, regular Fork and Join operators must be used,
causing the design to behave similarly to a Elastic System.

A. Design Overhead

In this section, we elaborate how finding points where
Merge and Branch operators can be inserted is a simple task
because most existing designs are inherently elastic.

Elasticity is omnipresent in digital design. To quantify
it, we take a look at various designs in OpenCores [18],
an opensource database of digital designs. We counted the
number of design implementations that are equivalent (same or
inverted signals), partially equivalent (only using one signal or
using signals with different meanings), or nonequivalent (not
implementing any handshaking) to our handshaking mech-
anism. We only considered projects marked as “DONE”,
in Verilog or VHDL and for which the code is publicly
available. Out of 270 projects, 35% are equivalent in most
blocks, 10% are equivalent in a few blocks, 20% are partially
equivalent (in general, only “start” and “done” signals). 25%
implement no or an incompatible handshake. The remaining



Fig. 6: Fluid Pipelines design uses a few design practices to avoid
deadlocks. Those are restriction on how to implement a given design
and not on which designs can be implemented.

10% are 10 operations (debouncer, LED control, ...) or only
combinational logic (lookup tables, arithmetic operation, ...).

These statistics show that the type of handshaking required
by Fluid Pipelines is already implemented in most designs, and
therefore, Fluid Pipelines will not introduce design overhead.
The designer simply needs to annotate the code.

B. Fluid Pipelines Deadlock Avoidance

In Elastic Systems, deadlocks come from extraneous depen-
dencies [4], i.e., one output of a module waits for an input that
it does not depend upon to fire. Another issue is the creation
of a token in the output before the consumption of one in the
input. This is specially a problem in Fluid Pipelines since the
designer has more freedom than in previous approaches. This
is easily avoided by adhering to the following design practices:

« No extraneous dependencies: If an output o of a module
does not depend on an input ¢ of that module, then o
should be produced regardless of the existence of 7. Also,
the dependency list of o should be a subset of the inputs
of the module.

« Self-cleaning: A circuit is self-cleaning if whenever it has
produced n tokens in its outputs, it has also consumed n
tokens from its inputs.

These directives do not restrict which designs are possible,
but rather how to implement each design. To make it clearer,
let us consider the example in Figure 6. The synchronous
module described in the figure has a pair of inputs (a and
b) and outputs (c and d), the value of ¢ depends on the values
of a and b, while the value of d depends only on the value of
b. Now, assume a designer wants to implement that module
using Fluid Pipelines. There are multiple options available.

The most straightforward implementation of the block
would follow the behavior described in Figure 7, which waits
until all inputs have valid data, and all outputs can accept new
data to perform the operation. This is a violation to the no
extraneous dependencies directive and can cause deadlocks
depending on the context in which the block is used. For
instance, in cases where the output d is connected as a
feedback path to a, d will only produce output when both
a and b are available.

A simple solution to this case is the use of a Fork operator.
The Fork operator isolates the handshake handling, and thus
avoids the deadlock situation by avoiding the unnecessary wait
on a valid signal in a to propagate d. An implementation using
Fork is shown in Figure 8.

The Self-Cleaning property is needed to avoid buffer over-
flow. In a circuit that produces n inputs per token consumed
where the output of is connected back to its input. For a buffer
with size m, it is clear that after m/n cycles, the buffer will
be full, causing a deadlock.

always @ (posedge clk)
if (a_valid && b_valid)
if (!c_stop && !d_stop)
c <= f(a,b);
d <= g(b);
c_valid <= true;
d_valid <= true;
a_stop <= false;
b_stop <= false;

Fig. 7: A straightforward implementation of a circuit may be
deadlock prone.
module fork (in, outl, out2)
if (in_valid && !outl_stop && !out2_stop)
outl <= in
out2 <= in
in_stop <= false
outl_valid <= true
out2_valid <= true

module f_and_g(a, b, c, d)
fork (b, bl, b2);

always @ (posedge clk)
if (a_valid && bl_valid && !c_stop)
c <= bl;
c_valid <= true;
bl_stop <= false;

if (b2_valid && !d_stop)
d <= b2;
d_valid <= true;
b2_stop <= false;

Fig. 8: Extraneous dependencies can be avoided by using fork to
broadcast signals and isolating false dependencies between stages.

C. Fluid Pipelines Channel Grouping

Modern OoO cores rely on the knowledge of the relative
number of cycles between two events. For instance, instruction
wake up with cache hit speculation relies on the knowledge
of how many cycles it will take the data from a cache hit to
arrive at the execution unit. Then, the instruction is woken
up in time to reach the execution at the same time, avoiding
penalties. This information needs to be taken into account
when ReCycling is applied, i.e., the number of cycles added
or removed from both paths needs to be the same.

To support this behavior, Fluid Pipelines allow the designer
to assign IDs to a channel (set of data with associated
handshake signals). Channels with the same ID are ReCycled
in the same manner, i.e., the same number of stages need to
be added/removed from each of the channels with the same
ID. There is no requirement that channels share wires or
handshake signal and the number of buffers already present in
different channels do not need to match. For instance, Figure 9
shows the instruction wake-up and data cache of an OoO core,
the channels connecting wake-up to execute and data cache
to execute are assigned the same ID, and thus need to be
ReCycled by the same amount. A possible ReCyling is shown
in Figure 9b, where one extra stage is added (shaded). The
circuit in Figure 9c is not a valid ReCycling, since different
number of stages is added in each channel.
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Fig. 9: Channel IDs allow the designer to constraint what pipeline
configurations are allowed to guarantee the functional behavior of the
circuit.

V. NEW EVALUATION METHODOLOGY

To find the optimal pipeline depth, a designer or tool
must estimate the throughput of a pipeline configuration (i.e.,
number and position of pipeline stages). For throughput esti-
mation, we propose the use of Coloured Petri Nets (CPN) [10],
which allows a fast design space exploration, reducing the
need of RTL simulation for every pipeline configuration.
CPNs are used for evaluations based on events/transitions and
data/tokens which is what we need to perform Branch-like
operations.

Petri Nets are defined as a bipartite graph of places and
transitions, connected by arcs. Places can contain tokens that
have data value attached to them (colour). The state of the net
(the marking) is defined by the number and colour of tokens
in each place. The initial marking is changed when transitions
fire. When a transition fires, tokens are subtracted from its
input places and added to its output places according to arc
expressions. There is a capacity associated with each place
representing the maximum number of tokens in that place,
and prevents input transitions from firing.

Definition 1: A Coloured-Petri Net is a tuple CPN =
(P, T,A,2,C,G,E,I,Cap):

o P is a finite set of places.

o T is a finite set of transitions, such that PN1T = @.

e AC(T'x P)U(P xT)is a set of directed arcs. Let

a.p and a.t denote the place and transition connected by
a respectively.

e X is a finite set of non-empty colour sets.

e« C : P — X is a colour set function which assigns a

colour set to each function.

o G is a guard function that assigns to each transition ¢t € T

a guard function G(t) : (@ U X)l**l — {0,1}, where
ot = {p|(p,t) € A}.

e F is an arc expression function that assigns to each arc
a € A an expression E(a), such that the type of E(a)
should match C(a.p).

o [ is an initialization function that assigns to each place
p € P an initialization expression I(p), I(p) must
evaluate to C'(p).

e Cap : P — 1 is a capacity function that attributes a

maximum capacity to each place.

Firing Semantics: Let M, a marking function, map each
place p € P into a set of tokens M (p) € C(p). Let G(t)(M)
(resp. E(a)(M)) denote the evaluation of G(t) (resp. E(a))
with the marking M. A transition ¢ is enabled, and said to fire
when G(t)(M) = true and Va € {b|b = (p,t),p € P,b €
A}, E(a)(M) <= M(a.p), and Vp € te,M(p) < Cap(p),

(a) Fork (b) Branch
(¢) Join (d) Merge

Fig. 10: CPN models can be used to estimate the overall throughput
of Fluid Pipelines and Elastic Systems.

where te = {p|(t,p) € A}. The firing updates the marking
function to M’ (p) = (M (p) E(p,t) U E(t,p)Vp € P.

Timing: In order to evaluate digital circuits, we need to
account for timing, which is not included in CPN models.
In regular CPNs, only one transaction fires at a given cycle.
Without changing the underlying semantics of CPNs, we
modify the model so that every transition that is enabled at the
beginning of the cycle fires. This is a more accurate description
of digital circuits and will help determine the number of clock
cycles it takes to execute.

We add one restriction to this formulation. The cardinality
of each expression must be 1; this means that for each arc, only
one token can be consumed/generated. Also, note that guard
functions can only depend on the incoming arcs to a transition.
This complies with the constraints defined previously, and
thus, avoids deadlocks. The restriction on the cardinality of
expressions changes the formalism of CPNs, and a formal
analysis of the impact of it is out of the scope of this paper
and needs to be further explored in future work.

Figure 10 depicts how the Fluid Pipelines’ operators are
modeled as CPN transitions. Circles represent places, bars
represent transitions, and dots represent tokens in transitions
that are not colour dependent while letters represent coloured
tokens. Merge operators do not define priority, and thus, con-
ceptually both transitions can occur at the same time, which is
compatible with the theoretical formulation of Fluid Pipelines.
While places correspond to elastic buffers, transitions do not
have a direct translation from the circuit model. However, they
can be mapped from the logic.

VI. EVALUATION SETUP

To evaluate Fluid Pipelines, we consider a fully compliant
IEEE-754 in-house FP Unit and a 2-way Out-of-Order Fab-
Scalar core [19] designed both as synchronous (for previous
approaches), and annotated with Fluid Pipelines’ operators.

A functional block diagram of the FPU unit is presented
in Figure 11a, and the CPN model used for the performance
evaluation is shown in Figure 11b, considering Fluid Pipelines.
In this case, the Branch and Merge operators are used. Note
how the division and square root modules use the Merge to
choose between the loop when the operation is computing or
sending the result to the queue when done. Both division and
square root take 64 cycles to complete. For regular elastic, the
Fork and Join operators are used instead.
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Fig. 11: CPN modeling can be used to evaluate system performance.
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Fig. 12: An Oo0O core contains a complex structure of nested loops
and interactions between blocks. It is used to show the scalability of
Fluid Pipelines.

The FabScalar-2W Qo0 core (Figure 12a) contains nested
loops and interactions between blocks and allows us to explore
the scalability of the different approaches. Branch operators
are used in the dispatch unit, Exec units and issue logic. Merge
operators are used after the exec units, in the free register pool
handling (ROB to Rename path), and in the next program
counter calculation (Fetch 1).

Fluid Pipelines are compared against SELF [5], [14] and
LI-BDNs [4]. To implement Elastic Systems, we use an EB
implementation with storage capacity of 2. For LI-BDNs, we
use queues of size 8. In the SELF implementation adding
pipeline stages to all the paths that are parallel to the critical
path will yield best performance and that is the performance
we have considered in our evaluation.

A. Benchmarks

For the FPU design, we report maximum and average
throughput. Maximum throughput is calculated by the using a
synthetic workload that only considers the best path (add, sub-
tract and multiply in this case). The average case is calculated
as the throughput over a million random instructions.

For the 00O core, only average case is measured. We run
all the SPEC2006 benchmarks that do not require Fortran, and
report average results between them. Results per benchmark
were not reported due to space limitations.

B. ReCycling

Our evaluation considers the addition of extra pipeline
stages to each design. Pipeline stages are added to the blocks
with the worst delay. We assumed perfect recycling/retiming
(perfect balancing of delays). Although this is usually not
possible, this approximation is sufficient. It is only necessary
to ensure that after the insertion of a pipeline stage, the two
resulting stages have a delay smaller than the second most
critical path before insertion. We add 2FO4 delay per added
stage to account for the register overhead.

To decide which pipeline stages are unbalanced, we use
synthesis results for the FPU and previously published data
from FabScalar [19] that reports pipeline stage breakdowns.
The minimum pipeline configuration is the original in the non-
elastic baseline: 6 for FPU and 13 for the core.

Since ReCycling changes both throughput (IPC) and timing,
the performance metric used is throughput X frequency
(equivalent to IPS). Also, it has been shown that unless power
is considered, the ideal pipeline for a design is extremely
deep [20]. Therefore, we consider ED. We estimated power
from synthesis results for the FPU and ESESC simulations
(based on McPAT [21]) for the core, and observe that the
logic energy consumption (both dynamic and leakage) remains
roughly constant. However, the dynamic clock energy con-
sumption increases linearly with both frequency and number
of registers, and the leakage clock energy increases linearly
with the number of registers.

VII. EVALUATION

We first show the design space exploration of the different
approaches. In particular, we show that Fluid Pipelines are
able to push the Pareto frontier towards better performance and
energy efficiency (Section VII-A). Then, we report the more
detailed results, such as the maximum frequency, throughput,
and ED for different pipeline configurations for both the FPU
(Section VII-B) and Out-of-Order core (Section VII-C).

A. Overall Results

Fluid Pipelines push the design space towards more energy
efficiency and better performance. This is accomplished by
avoiding false dependencies between concurrent paths. For
most of the design points in the design space, Fluid Pipelines
improve both better performance and energy. In comparison,
LI-BDNs reach better performance than SELF, but at the cost
of more energy (and area, not evaluated here).

The Pareto frontier (Figure 13) shows that for OoO core,
Fluid Pipelines (FP) deliver both less energy and more per-
formance than SELF. Also, Fluid Pipelines improve the best
performance (by 6%, but with 28% less energy) and the best
energy point (by 14%, but with 16% more performance).
Each point represents a different pipeline configuration, where
deeper pipelines tend to improve performance while consum-
ing more energy. In this case, LI-BDN was not used, as it will
be explained in the detailed evaluation.
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Fig. 13: Fluid Pipelines push the Pareto frontier for the OoO core
by improving both performance and energy.
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Fig. 14: Fluid Pipelines push the Pareto frontier for the FPU by
improving both performance and energy.

For the FPU (Figure 14), LI-BDNs result in increased
energy consumption due to the increased storage, but improved
the performance, when compared to SELF. Fluid Pipelines
present the best performance and energy out of the three
schemes, since they do not require extra storage. Compared
to SELF, Fluid Pipelines improve the best performance by
120%, with 21% less energy, or improve the best energy by
12% with 230% improvement in performance. In comparison
with LI-BDNSs, Fluid Pipelines improved the best performance
by 33%, using 83% less energy, or improved the best energy
by 38% with 118% better performance.

B. Elastic FPU

The maximum throughput for each of the models is summa-
rized in Table II. Fluid Pipelines deliver constant throughput
regardless of the number of pipelines. The throughput of
SELF decreases when there is additional pipeline stages in the
sequential loops. In the case of LI-BDNSs, the extra buffering
helps maintaining the throughput even after the insertion of a
few stages in the loops, but after a certain number of insertions,
there is back pressure due to the dependencies.

The effective frequency, calculated for the average through-
put, is reported Figure 15. It does not necessarily increase
with the number of pipeline stages. This is due the fact that
despite the frequency gain with the new pipeline stage, the
reduced throughput reverts the gains and reduces the overall
performance. Since in the average case the loop path is used,

TABLE II: Fluid Pipelines deliver constant maximum throughput,
regardless of the number of pipeline stages.

Pipeline stages | Fluid Pipelines SELF LI-BDN
6 1 1 1
7 1 1 1
8 1 1 1
9 1 0.67 1
10 1 0.50 1
11 1 0.40 0.83
12 1 037 0.74
13 1 0.33 0.67
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Fig. 15: In Fluid Pipelines, circuits can be recycled with higher

throughput then possible with Elastic Systems, and thus for better
system performance.
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Fig. 16: Fluid Pipelines improve the best ED point of the FPU,
pushing the depth of the pipeline.

there is a reduction in the gap between Fluid Pipelines and
the other models. The same fact also causes reduction in the
throughput of both SELF and LI-BDN. Despite the reduction
in the gap, Fluid Pipelines are still able to deliver a consider-
ably improved performance compared to SELF (120%), and
slightly improved performance compared to LI-BDN (40%),
but using less resources.

ED is reported in Figure 16. The energy overhead caused
by the extra storage in LI-BDNs reverses the advantages when
compared to SELF. When comparing Fluid Pipelines with
SELF, Fluid Pipelines improve the best ED point by improving
performance by 176%, with 5% better energy. Alternatively,
Fluid Pipelines deliver 120% better top performance (with
21% less energy). When we compare Fluid Pipelines with
LI-BDNs, Fluid Pipelines improve the best ED point by
improving both performance (by 163%) and energy (by 25%).

C. Elastic OoO Core

LI-BDNs were not considered, since their main improve-
ment over SELF is the addition of FIFOs between modules.
This is an important overhead for both area and power. In
addition, we note from the previous experiment that for deep
pipelining, LI-BDN behavior approaches that of SELF.

As in the FPU case, the effective frequency fluctuates
(Figure 17) when the frequency improvement is not enough to
compensate for the throughput decrease. Note that for some

Million Instructions
per Second (MIPS)

20 30 40 50

# of Pipeline Stages

Fig. 17: Effective frequency alone is not a fair metric since it does
not consider the extra registers added by SELF.
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Fig. 18: Fluid Pipelines shift the optimal ED point of the pipeline
depth for a complex OoO core, and improve performance with a
smaller power overhead.

points, SELF yields better overall performance than Fluid
Pipelines. This is due the insertion of extra pipeline stages
into all the paths that are parallel to the critical path, which in
some cases ends up hitting the second most critical path, and
yields a better frequency increase, with a cost in power and
area (area is not reported).

The first few stages added increase the frequency consider-
ably, with relatively small hit on IPC (throughput) and energy.
This leads to an improvement in the ED. As the pipeline
depth increases, the addition of extra stages has a smaller
impact on frequency, but lowers IPC more. In other terms,
a relatively high number of stages (i.e., power overhead) is
needed to improve the overall performance, and thus ED gets
worse. In SELF, when one stage is added to a path, the optimal
solution for throughput is to also add a stage in all parallel
paths with extra power overhead. Also in SELF, adding stages
has a negative effect on throughput. Combining these two
effects results in a faster degradation of ED. Fluid Pipelines
shift the optimal number of pipeline stages, make a deeper
pipeline configuration, while improving energy by 13% and
performance by 17%.

VIII. CONCLUSION

A new abstraction for Elastic Systems, Fluid Pipelines, is
proposed. By using Fluid Pipelines, the designer has the op-
portunity to extract OoO execution from the circuit whenever
possible, and boost the design performance. Fluid Pipelines
push the design’s Pareto frontier, by improving performance
and energy. In our experiments, Fluid Pipelines improve the
optimal ED configuration of an OoO core by improving energy
13% and performance by 17%, over SELF. For a pure high
performance configuration, Fluid Pipelines deliver 6% better
top performance while using 28% less energy.

We present a modeling framework using Coloured Petri
Nets, which allows us to evaluate the system runtime behavior,
and perform early design space exploration. This framework is
used to evaluate Fluid Pipelines against other Elastic System
approaches, showing an improvement in the overall throughput
of the systems. We argue for the use of this simple tool when
evaluating simple event-driven systems.

Fluid Pipelines open many research opportunities in EDA
and architecture like automatic pipeline transformations. It can
benefit from new DSLs for hardware description. Our future
work includes RTL and gate level evaluation of the proposed
model and transformations which, in turn, leads to a better
understanding of the overheads of this new technique as well
as the design trade-offs in terms of area and power.
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