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Abstract—Just-in-time compilation for dynamic languages uses
type speculation to generate optimized code for frequently
executed code sections. However, even the high-performance code
requires checks to ensure that assumptions made during code
generation are not violated. If the assumptions are violated then
the program reverts to executing unoptimized code. This process
is called deoptimization, and the checks are called deoptimization
checks.

We analyzed the frequency of conditional deoptimization
checks and the performance impact of the associated conditional
branch using the V8 Javascript engine running the Octane
benchmarks. Over half of the benchmarks have at least 5 checks
per 100 instructions, and 1 benchmark has as many as 19 checks
per 100 instructions.

The performance impact of the checks varies significantly
depending on the microarchitecture of the CPU that is running
the code. On average the conditional branch used by the checks
accounts for over 6.2% of the benchmark’s dynamic instructions.
Removing these checks provides only a 2.2% performance
improvement when running on a high performance Intel CPU,
but a 4.6% performance improvement on an Intel CPU optimized
for low power consumption.

I. INTRODUCTION

Dynamic languages such as JavaScript, Python, and Ruby
have become extremely popular in recent years. Applications
written in dynamic languages have historically executed much
more slowly than those written in statically typed languages,
in part because variable type information is only known at
runtime, and not at compile time. However, in recent years
the performance of JavaScript runtime and compilers has
improved dramatically and JavaScript is widely used in client
and server applications that require high performance.

JavaScript implementations attain their high performance
by using multi-tiered just-in-time (JIT) compilation combined
with type speculation [6], [12], [16], [17]. The initial tier
quickly parses JavaScript source code and executes it with
an interpreter or a fast compiler that does not perform any
optimizations. As this code runs it stores the types of variables
used by a function in inline-caches using techniques first devel-
oped for Smalltalk [7] and Self [9]. After type information has
been collected, frequently executed code is recompiled with an
optimizing compiler, which assumes that variable types will
not change even though this is not guaranteed by the language
semantics. In order to guarantee that these assumptions are
not violated, the compiler inserts checks to ensure that the
assumptions about types still hold. If the condition expected
by the checks fails to hold then the function stops running
the optimized code and switches back to the unoptimized
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Fig. 1. Frequency of deoptimization checks for the Octane benchmarks when
executed with the V8 JavaScript engine. Eight of the 15 benchmarks have
more than 5 checks per 100 instructions, and many of the checks are comprised
of multiple instructions.

version. The process is called deoptimization1, and the checks
are called deoptimization (or deopt) checks.

The cost of each conditional deoptimization check is rel-
atively small, typically ranging from 1 to 3 instructions. An
example of a common check is the comparison of an object’s
pointer to its type with a pointer to the expected type. The
comparison is followed by a conditional branch that branches
to deoptimization code in case the pointers do not match.
Although the cost of each check is small, the checks can occur
very frequently for applications that run mostly in optimized
mode. Figure 1 shows the frequency of deoptimization checks
for the Chrome V8 JavaScript engine when running the Octane
benchmark suite [1]. Over half of the benchmarks execute at
least 5 checks per 100 instructions, and many of the checks
are comprised of more than 1 instruction.

In this paper we analyze the type and frequency of deop-
timization checks used in the Chrome V8 JavaScript engine,
as well as the performance overhead associated with these
checks. Although our analysis focuses on Google’s Chrome
V8 JavaScript engine, all major JavaScript engines including
those from Apple, Mozilla, and Microsoft have deoptimization
checks, and deoptimization checks are present in JITs for
Python, Ruby, and other dynamic languages. We believe

1Also sometimes called “bailout”



that the insights gained from studying deoptimization check
overhead for a specific JIT implementation can be useful in
other contexts since speculative optimization is a widely used
technique in JITs for dynamic languages.

We identified four main types of deoptimization checks
that are used in Chrome V8 and characterized the frequency
of checks when running the Octane Benchmark suite. We
also analyzed the performance overhead of the conditional
branches used for the checks by running the benchmarks on
four different real systems with checks enabled and disabled.
We found that modern wide issue out-of-order processors
are usually able to absorb the overhead of executing the
extra check instructions with minimal performance overhead.
However, narrower issue systems suffer a larger slowdown that
corresponds with the instruction count overhead.

This paper’s contributions are:
• Characterizing the performance overhead of deoptimiza-

tion checks for the Chrome V8 JavaScript engine on four
different machines,

• Showing that performance overhead does not always
correlate with instruction count overhead, but rather de-
pends on a combination of the workload and the system
micorarchitecture; and

• Categorizing the types of deoptimization checks and
characterize their execution frequency when running op-
timized code.

The rest of this paper is organized as follows: Section II
provides background information about JITs for dynamic lan-
guages, the V8 JavaScript engine, and the Octane benchmark
suite that we used for our experiments; Section III shows
the types of frequency of deoptimization checks that we
observed; Section IV provides an analysis of performance
overhead associated with deoptimization checks; Section V
surveys related work; and Section VI concludes.

II. BACKGROUND

A. Dynamic Languages

Dynamically typed languages do not require developers to
declare types of variables in the program source code; instead,
types are determined at runtime based on the state of the
running program. These languages are often used to improve
programmer productivity [11], [15], even though they can have
a significant performance overhead.

The simplest way of implementing a runtime system for a
dynamic language is to use an interpreter that directly executes
statements in the program source code. Each time an operation
is performed, the interpreter checks the type of the variables
used in the operation and selects the method that is appropriate
based on the variable types.

To make this more concrete, consider the snippet of
JavaScript code shown in Listing 1. In this example the
function twice has different behavior depending on the type
of its input parameter. When given the numeric argument 1
it adds 1 and 1 and returns the value 2. But when given the
string argument “1” it concatenates “1” and “1” and returns the
string “11”. When an interpreter executes the function twice
it first determines the type of the input parameter arg and

then it chooses the correct operation to perform based on this
type.

Listing 1. JavaScript dynamic dispatch example
function twice(arg) {
return arg + arg;

}
res = twice(1); // res is number 2
res = twice("1"); // res is string ’11’

In general interpreted languages suffer a large performance
overhead compared to statically typed compiled languages.
Part of the overhead is associated with the dispatch loop, which
must continually check the type of each variable and then
execute the correct functionality based on the variable type.
The other part of the overhead is caused by the fact that the
type checks prevent many common compiler optimizations.

Despite the fact that these languages allow variables to
change their type at runtime, often the runtime behavior
is very predictable. Smalltalk [7] and SELF [9] pioneered
techniques using inline caches and dynamic compilation to
improve performance, and these techniques are used in the
most popular JavaScript systems today [6], [12], [16], [17].

To understand how this works, consider the example in
Listing 2 and imagine that the array input contains many
integers. During the first iteration of the for loop the runtime
system looks up the appropriate operation (addition) for the
twice function based on the fact that its input parameter is a
numeric type. At the same time the runtime system saves this
information in an in-line cache to simplify the method lookup
process in case the twice function is called with an integer
argument again.

During future iterations of the for loop the runtime
system will be able to use information cached in the in-
line cache when determining how to execute the twice
function. However, even with this optimization there is a
significant performance overhead compared to the code that
a statically compiled language like C++ could generate given
the knowledge that the parameter for the function is always
an integer.

To further improve performance the runtime system can
generate an optimized version of the twice function that
assumes that the arg parameter is always an integer. This
optimized code does not need to check the inline cache
to determine what method to execute; instead, the compiler
can perform integer addition using a single machine code
instruction.

Listing 2. Inline cache example
function twice(arg) {
return arg + arg;

}
var input = [1,2,3,4, . . .];
var output = [];
for(var i of input) {
output.push(twice(i));

}

However, this only works if the twice function is called
with an integer argument. And the JavaScript semantics do
not guarantee this—instead they allow any type of argument.
The runtime systems solves this problem by inserting a



deoptimization check before using the arg parameter. The
deoptimization check is called at runtime and ensures that
the arg parameter has the correct type for the optimized
code. If arg parameter is not an integer then the check
fails and triggers a deoptimization event. The deoptimization
restores the state of the program to one where the unoptimized
compiler can resume code execution and look up the correct
method based on arg’s type.

In this paper we focus on understanding the frequency and
performance overhead of the deoptimization checks that are
inserted in the optimized code by the compiler. Speculative
compilation with deoptimization checks is used by many
runtime systems for dynamic languages. We chose to focus
on the V8 runtime system that runs JavaScript code in order
to study a specific language and runtime system combination.
In the next section we provide some background about V8 and
why we chose it as the runtime system to use for our study.

B. V8 JavaScript Engine

The V8 JavaScript engine was created as part of Google’s
project to develop the Chrome web browser and was first
released in 2008. However, V8 itself was developed as a
standalone open source project. It remains under active de-
velopment today and is still used in the Chrome browser. It
is also used by node.js, which is widely used to run server
side JavaScript code. The initial version of V8 only had a
single compiler, but in 2010 a new version with an optimiz-
ing compiler was released. The optimizing compiler made
use of speculative type information stored in in-line caches
and required deoptimization checks. The initial compiler is
called “full-codegen” and the optimizing compiler is called
“crankshaft.” In 2014 Google added a third compiler named
TurboFan to the V8 engine. This compiler attempts to improve
performance by applying the ”sea of nodes” [5] techniques.
However, currently all the Octane benchmarks except for Zlib
spend the majority of their time executing code generated with
the Crankshaft optimizing compiler.

Our study was motivated by a desire to understand the
performance overhead the frequently executed but rarely taken
deoptimization checks impose on dynamic languages and to
consider possible hardware extensions to reduce this overhead.
As a result we wanted to study a runtime system that delivers
high performance, since a low performance system may imply
the need for hardware extensions, when in fact better software
engineering could remove overhead without changing the
CPU architecture. JavaScript is one of the most widely used
dynamic languages, and developers have invested more effort
in developing high performance runtime systems for JavaScript
than any other dynamic language in use today. V8 and Firefox
are available as open source projects that run on Linux, and
compete for the best performance results on widely used
JavaScript benchmarks. Either would have been fine to use for
our analysis. We chose V8 in part because of its availability
as a standalone project separate from the Chrome browser it
is used with.

C. Octane Benchmarks

Another choice we had to consider was what benchmarks to
use for our study. There are many benchmarks suites available
and in our initial characterization work we gathered results
from the JetStream, Massive, Kraken, and SunSpider suites,
in addition to the Octane suite. SunSpider is very old and
has effectively been replaced by JetStream. Our tests with
SunSpider showed relatively few deoptimization checks, but
that is largely because the benchmarks are so short that they
spend little time executing optimized code. Our results from
Kraken, Massive, and Jetstream were in roughly the same
range as results we saw from Octane.

The Octane benchmark suite was developed by Google
largely to help facilitate the development of the V8 JavaScript
engine. As a result it is somewhat of an optimization target.
However, our goal was to evaluate overhead of deoptimization
checks in cases where the software had been tuned to get the
best possible performance. So we chose it as the benchmark
suite to use when collecting detailed performance results
across a range of different systems.

III. CHECKS CATEGORIZATION

In V8, deoptimization occurs whenever the runtime system
transitions from executing optimized code to unoptimized
code. There are two primary types of deoptimization events:
conditional deopts and unconditional deopts.

When an unconditional deoptimization point is inserted in
the optimized code, the program will always be deoptimized
if it reaches this point. For example, if V8 were to generate
optimized code for a hot loop, it might insert a deoptimization
point at the loop exit. This way the optimizing compiler
could compile just the body of the hot loop, and when the
loop reached its exit condition the runtime would switch
to unoptimized code where it could continue code profiling
the code to identify new hot regions. This also means that
the unconditional deoptimization check does not incur any
additional overhead when executing optimized code. The check
for the loop exit condition is needed regardless of whether the
code that is executed outside of the loop is more optimized
code, or if it is a deoptimization point. Deoptimization is a
necessarily expensive operation because it causes the runtime
to execute unoptimized code, which is much slower than
optimized code.

In contrast, a conditional deoptimization point is inserted
in optimized code when the compiler needs to ensure that
some condition is true before continuing to execute the opti-
mized code. For example, the compiler may have generated
optimized code for a function assuming that the values the
function is operating on are integers. However, the language
semantics do not guarantee this, so the compiler must insert
deoptimization checks, and if the function receives a value
that is not an integer then it is deoptimized and V8 switches
to using the baseline compiler. The conditional checks need
to be very low overhead because they can occur frequently in
the optimized code.

The V8 source code uses an enumeration type to define
possible reasons for deoptimization. There are 64 possible
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Fig. 2. Frequency of four different categories of deoptimization checks for
each benchmark. Zlib and Codeload have less than 1 check per thousand
instructions in any category and so their results appear as 0 on the plot.

reasons defined; however, these include reasons for both
conditional and unconditional deoptimizations. We identified
24 of these deoptimization reasons that are used in conditional
deoptimization when code is generated for the x64 target.
We instrumented the code to count how frequently each of
these deoptimization checks occur when running the Octane
benchmarks. Of the 24 deoptimizations reasons that we instru-
mented, 7 of them occurred relatively frequently in at least
some benchmarks while the remaining ones were executed
a negligible number of times (less than once per thousand
instructions). We grouped the frequently occurring checks into
the following categories: type checks, small integer checks,
bounds checks, overflow checks. Figure 2 shows the frequency
of each of these types of checks, and we provide more details
about each type in the following sections.

A. Type Checks

JavaScript uses prototypes rather than classes for creating
objects, and the language itself does not define types. However,
V8 creates “hidden classes” to group together objects created
using the same prototype chain. This allows V8 to effectively
treat objects as having a type, which allows for optimizations
in accessing an object’s fields.

Type checks are necessary to ensure that a variable
has the type that the optimizing compiler expects. We
categorized the following deoptimization reasons together
as type checks: kAccessCheck, kProxy, kHole,
kWrongInstanceType, kWrongMap.

The most frequently executed of these checks is
kWrongMap and it is perhaps the easiest to explain. In
V8, each object has a pointer to its “hidden class,” which
effectively defines its type. The “maps check” checks what
hidden class the object is pointing to and makes sure that it
matches the hidden class type that the compiler expects. If it
matches, then the check succeeds; if not, then it fails and the
code is deoptimized due to “wrong map.”

The remaining deoptimization reasons that we have cate-
gorized as type checks are associated with different aspects

of JavaScript semantics and V8 optimizations, but they all
follow a similar pattern where a pointer value is compared to
an expected value.

B. Small Integer (Smi) Checks

V8 uses tagged pointers as an optimization for representing
“small integers” and storing them on the heap. This technique
takes advantage of the fact that pointers to heap objects are
aligned to 4-byte boundaries when they are allocated. As a
result the lowest bit in the pointer to an object is always 0.
However, when storing pointers to objects V8 sets this bit to
1 (since the correct value is always 0 no information is lost).
Signed integers that can be represented in 31 bits or fewer are
stored directly in the pointer field, and the lowest bit is set to
0.

The deoptimization reasons associated with Smi checks are
kSmi and kNotASmi. In both cases the checks compare the
lowest bit of the object’s pointer to determine if it is a 0 or
not.

C. Bounds Checks

Bounds checks ensure that an access to an array is within
the array bounds. They work by comparing the array length
to the index of the array access. If the index if larger than
bounds limit then the check triggers a deoptimization with the
reasons kOutOfBounds.

D. Overflow Checks

The final category of checks is overflow checks and these
are used in a variety of arithmetic operations. These checks
differ from the previous ones because no additional compar-
ison operation is generated for the x64 architecture. Instead
the checks use the result of the overflow condition code that
is set implicitly. In cases where deoptimization is triggered,
the reason is kOverflow.

IV. PERFORMANCE EVALUATION

In the previous section we characterized the types and
frequency of conditional deoptimization checks. In this section
we analyze the performance overhead associated with these
conditional deoptimization checks by comparing the baseline
performance metrics with metrics when the conditional de-
optimization checks are skipped (i.e. not executed). In Sec-
tion IV-A we explain how we were able to remove the checks
and still have correct benchmark execution. Section IV-B
describes our experimental setup for measuring performance
metrics. Section IV-C compares the relative instruction count
and execution time between the baseline system and the sys-
tem that skips deoptimization checks. Section IV-D provides
additional analysis looking at the IPC of these two config-
urations, and Section IV-E examines the branch prediction
accuracy.

A. Experiment Methodology

Although deoptimization checks appear relatively fre-
quently, they are almost never taken in the Octane benchmarks.
These checks evaluate a variety of conditions, but all of them
include a conditional branch. In order to estimate the overhead



of the conditional deoptimization checks we modified the
V8 source code to remove the conditional branch when we
could guarantee that it would never be taken. This allowed
us to compare the performance of the baseline V8, which has
deoptimization checks, with the performance when the checks
are skipped. We selected which checks to remove based on
the deoptimization reason. First we profiled the benchmarks
and counted the number of times each type of deoptimization
was triggered in each benchmark. Then we modified the code
generation phase to skip insertion of the conditional branch
for the deoptimization reasons that were never triggered by a
specific benchmark.

By executing the same benchmark multiple times we de-
termined exactly when the deoptimization events did and did
not occur. When the profiling pass showed that a specific type
of check never triggered a deoptimization event, then it was
safe to remove that type of check. Our technique could not be
used to reduce the number of deoptimization checks for real
applications because the checks we removed may have been
needed in the case of different inputs, but it was safe for our
benchmarks running with a known input set.

Unfortunately, if a specific deoptimization reason triggered
even a single deoptimization event, we still needed to keep
the check in order to ensure correct benchmark execution.2

However, despite this restriction we were able to test with
removing a majority of the checks for most of the benchmarks,
and for some benchmarks only a negligible number of checks
remained.

Figure 3 shows the number of checks that were removed
and that remained for each of the benchmarks we evaluated.
Codeload and zlib had a negligible number of checks to
begin with, so only a negligible number could be removed.
Typescript had a significant number of checks, but we were
only able to remove a negligible number of them. As a result
we saw no difference in performance between the baseline
and when checks were removed, and so we do not include
results from these benchmarks in the rest of our performance
analysis. Pdfjs also had a significant number of checks, but we
were only able to remove about 40% of the checks. We chose
not to include results from this benchmark because we do not
think we were able to properly characterize the performance
overhead when less than half of the checks were removed.

In the rest of this section we refer to results from the
unmodified V8 code as baseline and results when we skipped
insertion of the conditional branches for deoptimization checks
as skip.

B. Experiment Setup

To evaluate the performance overhead of deoptimization
checks we ran our baseline configuration and our skip config-
uration on a variety of different x64 systems. After our initial
characterization we selected four systems with very different
microarchitectures to use for detailed analysis. The first two
systems use Intel CPUs released in 2013 and fabricated in
22nm technology. One of them is a high performance system

2We also experimented with removing required checks, but this crashed the
program. Results shown in this paper include all required checks.
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Fig. 3. Frequency of deoptimization checks that we were able to remove
in our skip configuration, and frequency of checks that remained for each
benchmark. Codeload and Zlib had a negligible number of checks to begin
with and we removed less than half of the checks for Typescript and Pdfjs.
We excluded results from these benchmarks from the rest of our performance
analysis. For the remaining benchmarks we were able to remove a significant
fraction of the total number of checks.

that uses the Haswell microarchitecture, and we refer to this
as Intel Big Core (BC) in the rest of the paper. The other has
a low power CPU that uses the Silvermont microarchitecture,
and we refer to it as Intel Little Core (LC) in the rest of the
paper. The other two systems used AMD processors released
in late 2010 and early 2011, and they are also split between
big and little cores. The detailed specifications for all systems
are shown in Table I.

TABLE I
CPU SPECIFICATIONS

Intel Big Core (BC) Intel Little Core (LC)
Model Xeon CPU E3-1275 v3 Celeron CPU N2820
Micro arch. Haswell Silvermont
Freq. 3.5 GHz 2.13 GHz
L1 i-cache 32 KB 32 KB
L1 d-cache 32 KB 24 KB
L2 cache 256 KB 1024 KB
L3 cache 8192 KB –

AMD Big Core (BC) AMD Little Core (LC)
Model Opteron Processor 6172 E-350
Micro arch. Magny-Cours Bobcat
Freq. 2.1 GHz 1.6 GHz
L1 i-cache 64 KB 32 KB
L1 d-cache 64 KB 32 KB
L2 cache 512 KB 512 KB
L3 cache 5118 KB –

We ran all experiments using version 5.1.281.27 of the
V8 JavaScript engine on systems running Arch Linux. Our
baseline results were collected using an unmodified version of
V8, while the skip checks results were only modified to skip
insertion of a conditional branch if we had determined that the
deoptimization reason associated with the check was never
triggered for that benchmark. We set the “doDeterministic”
flag in the Octane benchmarks to true to ensure that each
benchmark ran for a fixed number of iterations rather than a
fixed amount of time.
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When running the benchmarks we made sure that the test
systems were not running any other compute intensive work-
loads. However, there was still some variation in execution
time as a result of the complex interaction between hardware,
OS, and the V8 runtime system that uses JIT compilation and
garbage collection. To account for this variation we ran each
benchmark configuration 500 times. We report results based on
the mean of the 500 benchmark executions for each measured
statistic, and we also calculated the confidence interval at a
95% confidence level. We report the confidence interval in
our graphs, although in most cases its bound is small enough
that it is not easily visible on the graph. We also show the
geometric mean as a summary of all the benchmark results for
each metric that we report, but we do not include a confidence
interval when reporting this summarized result. We recorded
the execution time of each experiment and also used the Linux
perf tool to collect performance counter results for instructions,
cycles, branches, and branch misses.

C. Relative Performance

Earlier we showed how many checks we skipped for each
benchmark (see Figure 3). Here we show how the reduction
in instructions executed due to skipping the checks impacts
the execution time of the benchmark. Figure 4 compares the
relative instruction count and execution time of the baseline
and skip results. The relative instruction count was very similar
across all four systems so we only show it a single time.3 But
the relative execution time had significant variation between
the different systems. For example, removing 8 checks per
100 instructions in Richards resulted in an 8% reduction in
instruction count for both Intel BC and Intel LC. But on the
Intel BC this only resulted in a 1.2% decrease in execution
time, while on the Intel LC it resulted in a 9.1% decrease.

3For most benchmarks the instruction count was very stable between runs;
only splay showed significant variation. Splay is designed to stress the garbage
collection so this behavior is not surprising.

The general trend is that the systems with big cores tend to
benefit less from removing checks than ones with little cores.
On average across all of the benchmarks the instruction count
was reduced by 7.2%. The Intel BC execution time was re-
duced by 2.2%, while the LC time dropped by 4.6%. Looking
at the AMD CPUs, BC execution time dropped by 2.6% and
the LC time dropped by 5.0%. However, for the AMD cores
these results are skewed somewhat by Navierstokes, which
has the largest reduction in execution time (nearly 30%) of
any configuration tested.

Although the general trend is for the big cores to benefit
less from removing checks, the extent varies significantly
depending on the benchmark. For instance, Navierstokes is
the benchmark where we removed the most checks, and the
instruction count dropped by 18%. This resulted in only a
3.5% reduction in execution time on the Intel BC but a
14.8% reduction in execution time on the Intel LC. Crypto
is another benchmark where we were able to remove a large
fraction of checks, and the instruction count dropped by
11.7%. This corresponded to a 9.4% reduction in execution
time for Intel BC and a 10.8% reduction for the Intel LC.
To better understand this performance difference we looked at
IPC and branch prediction accuracy.

D. IPC

Figure 5 shows the absolute IPC of the Intel BC and LC
for each of the benchmarks for both the baseline and skip
checks settings, and Figure 6 shows similar data for the AMD
systems. In all cases we counted the total instructions and cy-
cles that were actually executed by the benchmark for each of
the different configurations and used this data to calculate IPC.
This allowed us to compare the true instruction throughput for
each configuration. But it also meant that higher IPC for the
base configuration compared to the skip configuration didn’t
result in speedup, because the base configuration executed
more instructions.
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Navierstokes where the IPC of the skip configuration actually increases for the LC.

The maximum issue width of the Intel BC is 4 and for
the Intel LC it is 2, so the large absolute difference between
the Intel BC and LC makes sense. However, the Intel BC
has a noticeable drop in IPC for many of the benchmarks
while the Intel LC has a negligible drop in IPC in most
cases. This explains why the Intel BC shows less performance
improvement on average than the Intel LC when skip checks
configuration removes conditional branches. The branches that
are removed are typically easy to predict, and they do not
cause many stalls on the wide issue Intel BC. However, on
the narrow issue Intel LC even these easily predicted branches
reduce instruction throughput. As a result the LC benefits
much more from removing the checks than the BC does.

However, for a benchmark like Crypto the Intel BC is
executing at near its peak IPC of 4. So in this case even the
easily predicted branches associated with the deoptimization
checks contribute to limiting execution throughput. Removing

these branches provides comparatively larger benefits for this
benchmark than one like Navierstokes where peak throughput
is not constrained by issue-width.

For the AMD systems the trends are similar, but Navier-
stokes is an interesting outlier where the IPC improves for
the AMD LC when going from the baseline to skip checks
configuration. This is somewhat surprising since the branches
removed by the skip checks are easily predicted. In fact
when looking at the branch prediction data the number of
misses is not significantly reduced. However, the number of
branches as a percentage of total instructions drops from 27%
of instructions to 8% of instructions. It’s unclear whether there
is a limit on how many branches the AMD LC system can
retire per cycle, or if it is hitting some other bottleneck that
limits its throughput. The 27% of instructions as branches
for the baseline is similar to many of the other benchmarks,
but none of the other benchmarks with a high percentage of
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Fig. 7. Branch misses per thousand instructions (MPKI) for the Intel Big Core (BC) and Little Core (LC) systems. For most benchmarks the BC has much
better prediction accuracy than the LC. As a result, removing branches in the skip configuration does not reduce the absolute number of misses for the BC,
and the MPKI increases slightly as misses stay constant and the number of instructions decreases. For the LC, removing the conditional branches helps the
overall prediction accuracy despite the fact that the branches are typically very easy to predict.
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Fig. 8. Branch misses per thousand instructions (MPKI) for the AMD Big Core (BC) and Little Core (LC) systems. The prediction accuracy for both cores
is better than the Intel LC, but worse than the Intel BC. Both of the AMD cores have MPKI increase slightly when removing the easily predicted branches
used by the deoptimization checks.

branches have as dramatic a drop in branch count to bring the
total below 10%.

E. Branch Prediction

The final set of data that we show is branch misses per
thousand instructions (MPKI). Figure 7 shows results for the
Intel systems and Figure 8 shows results for the AMD systems.

In the case of the Intel BC the MPKI always increases when
going from the baseline configuration to the skip configuration.
In most cases this is because the total number of instructions
is reduced, while the number of branch misses stays constant.
However, Crypto was interesting because the absolute number
of branch mispredictions increased when going from the base-
line to the skip configuration. Removing the easily predicted
branches in the baseline configuration apparently contributed
to increasing the total number of mispredictions, not just the

misprediction rate. Regardless, Crypto was still the benchmark
that benefited the most from removing branches on the Intel
BC.

The Intel LC shows opposite behavior to that of the BC. For
the LC the MPKI is reduced from most benchmarks when
switching from the baseline to skip configuration. Typically
the branch prediction accuracy is still better for the baseline
configuration because most of the branches that are removed
are easily predicted, but even these easily predicted branches
have some mispredictions, and so removing them reduces the
overall number of mispredictions per instruction.

The results for the AMD systems were mixed, as there was
not as great a difference between the BC and LC as there was
for the Intel systems. The overall MPKI for both AMD systems
is worse than the Intel BC, but better than the Intel LC. The
difference between the AMD BC and LC is less pronounced



than it is for the Intel systems.

V. RELATED WORK

JavaScript performance has been widely studied and a
variety of hardware and software optimizations have been
proposed to improve the performance of optimized code or
reduce the overhead associated with deoptimization checks.

The most closely related work is from Dot et al. [8]. Like
us they are interested in analyzing performance overheads
associated with dynamic languages. They also proposed ISA
extensions to reduce the overhead of deoptimization checks
and evaluated the proposed extensions using a combination of
data collected with Pin and simulation results from the Sniper
simulator.

Like them we were interested in the potential for hardware
optimization to reduce the overheads imposed by dynamic
languages. But we chose a different technique to evaluate
the potential benefit of possible hardware optimizations. Our
technique involved measuring performance using real systems
while modifying the code generated by the V8 JIT compiler.
We believe this allowed us to get better insights into the
true performance impact of the conditional branches used
by deoptimization checks. By using real systems we were
able to run the benchmarks to completion multiple times and
collect statistically significant data even in the presence of
system noise associated with the complex interaction of a
runtime system that includes a two-tiered JIT compiler and
uses garbage collection for memory management, all running
on a full Linux OS. We also evaluated four systems with
very different microarchitectures rather than a single design
point. Our work is more of a limit study on the potential
benefits of reducing the number of branches associated with
deoptimization checks. Conversely, their work provides an
evaluation of a specific technique that could be used to achieve
this goal and is only simulated for one specific design point.

Anderson et al. [3] also observed that dynamic languages
have a large number of runtime checks and proposed hardware
extensions intended for mobile processors to decrease the
overhead of checking that loads had the correct type. Their
performance analysis focused on simpler in-order cores that
were common in mobile processors at the time. In contrast, our
work focuses on out-of-order designs that are more common
today in both server systems and high end mobile CPUs.

Several researchers have studied JavaScript code in an effort
to characterize it and understand the primary performance
bottlenecks and their impact on the microarchitecture of con-
temporary CPUs.

Zhu et al. [21] studied the performance of event driven
applications that run with node.js. Although node.js uses the
V8 JavaScript engine to execute JavaScript code, their work
focused on characteristics specific to the event driven program-
ming model, rather than overheads in the V8 JavaScript engine
associated with running optimized JavaScript code.

Ogasawara [14] also studied the performance characteristics
of node.js workloads. He showed that most of the execu-
tion time is spent in C++ library calls, rather than running
JavaScript code that can be optimized by the V8 runtime. This
contrasts with our analysis since we focused on understanding

overheads associated with the optimized code generated by the
V8 JIT compiler.

Musleh and Pai [13] studied the impact of a variety of
microarchitectural parameters on the V8 JavaScript engine, but
they did not look specifically at the overhead of deoptimization
checks, which is what we focused on.

Auler et al. [4] analyzed how possible JavaScript compiler
optimizations can have different performance impacts depend-
ing on the system executing the code. They also proposed a
methodology to automatically crowdsource the optimal con-
figuration for a specific device.

Ahn et al. [2] proposed modifications to how V8 constructs
types and demonstrated performance improvements on the
JSBench benchmarks. Their work differs from ours because
their proposed modifications were intended to increase the
amount of time that V8 spent executing optimized code,
whereas our work focused on deoptimization checks overhead
that are only present when executing optimized code.

Kedlaya et al. [10] observed that when managed language
runtimes (such as the JVM or CLR) are used to run dy-
namic languages, they typically do not include support for
deoptimizations. This limits the quality of code that can be
generated and inhibits common optimizations. They propose
a way to do this and implemented it in MCJS, a JavaScript
engine implemented on top of Microsoft’s CLR runtime.

There has also been some work characterizing the behavior
of JavaScript benchmarks in an effort to understand how they
compare to real-world JavaScript code commonly seen on
websites:

Richards et al. [19] performed a detailed analysis of how
JavaScript is used in practice. They found many examples of
widely used techniques that inhibit optimization. Their work is
complementary to ours since it suggests the need for changes
to increase the fraction of time that JavaScript engines can
spend running optimized code. In contrast, we characterized
overheads that only exist for optimized code.

Ratanworabhan et al. [18] performed a similar study and
compared the characteristics of 11 commonly used websites
with those of the SunSpider and V8 benchmarks (note that the
V8 benchmark suite is a predecessor to the Octane benchmark
suite, and is not the same as the V8 JavaScript engine).

Tiwari and Solihin [20] also studied benchmark characteris-
tics, although in their case they compared the V8 benchmark
suite with SunSpider. Like us, they used the V8 JavaScript
engine and collected hardware performance counter results
while running on real machines. Unlike us, however, they did
not look specifically at deoptimization checks; instead they
focused on analyzing the similarity of benchmarks in the V8
and SunSpider suites.

VI. CONCLUSION

Type speculation is a proven and effective technique for
improving the performance of compute intensive code written
in dynamic languages. But speculation can be incorrect, and
the runtime system needs to detect when this happens and
revert to running unoptimized code. The process of reverting
from optimized code back to unoptimized code is called
deoptimization, and the optimizing compiler inserts many



deoptimization checks in the code that it generates. These
checks consist of a comparison, or for overflow checks a
condition flag that may be generated implicitly by a preceding
arithmetic operation, and a conditional branch.

We evaluated the frequency of the deoptimization checks
in code generated by the V8 JavaScript engine running the
Octane benchmarks. We then evaluated the performance over-
head associated with the conditional branch when running the
complete benchmarks on four different real systems with vary-
ing microarchitectural parameters. This was done by skipping
the branch insertion during the code generation phase in cases
where we knew the benchmark would never trigger the branch.

The performance overhead of the deoptimization check’s
conditional branches varied significantly depending on the
system parameters. On average we eliminated 6.2% of in-
struction by skipping the branches. This resulted in only a
2.2% performance improvement on our system with a high
performance Intel CPU, but on an Intel CPU targeted towards
low power operation performance improved by 4.6%.

The reason for this difference is that the high performance
system had a wider issue width and a more accurate branch
predictor that was capable of predicting more branches per
cycle. The branches associated with deoptimization checks are
highly biased towards not taken, and as a result they are easily
predicted.

Previous work has suggested ways to reduce the overhead of
deoptimization checks by eliminating the conditional branch
and using special instructions that perform checks implicitly
and trigger an exception in the rare case where the check
fails. However, our analysis shows that even when checks
are frequent, their performance overhead may be limited on
wide issue CPUs. The easily predicted branches may not be a
bottleneck for system throughput.

Wider issue CPU cores inherently consume more power,
and current trends are for CPUs to have both high performance
“big” cores along with simpler power optimized “little” cores.
Our analysis indicates that little cores may benefit more
than big cores from optimization to reduce the number of
branches for deoptimization checks. In addition our analysis
only considered the impact of removing conditional branches
from the code generation phase. It may be possible to achieve
additional benefits by making changes earlier in the code
generation pipeline, but this would depend on the specific
optimizations proposed and their interaction with the language
runtime system.

Overall our study characterizes the overhead of conditional
deoptimization checks in a state-of-the-art dynamic language
runtime system running on modern out-of-order processors
with full OS and language runtime interaction. This comple-
ments previous work that has studied other aspects of these
workloads using various architectural simulators.
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