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ABSTRACT

Simulation environments are an indispensable tool in the design,
prototyping, performance evaluation, and analysis of computer sys-
tems. Simulator must be able to faithfully reflect the behavior of
the system being analyzed. To ensure the accuracy of the simula-
tor, it must be verified and determined to closely match empirical
data. Modern processors provide enough performance counters to
validate the majority of the performance models; nevertheless, the
information provided is not enough to validate power and thermal
models.

In order to address some of the difficulties associated with the
validation of power and thermal models, this paper proposes an in-
frared measurement setup to capture run-time power consumption
and thermal characteristics of modern chips. We use infrared cam-
eras with high spatial resolution (10x10xm) and high frame rate
(125fps) to capture thermal maps. To generate a detailed power
breakdown (leakage and dynamic) for each processor floorplan unit,
we employ genetic algorithms. The genetic algorithm finds a power
equation for each floorplan block that produces the measured tem-
perature for a given thermal package. The difference between the
predicted power and the externally measured power consumption
for an AMD Athlon analyzed in this paper has less than 1% dis-
crepancy. As an example of applicability, we compare the obtained
measurements with CACTI power models, and propose extensions
to existing thermal models to increase accuracy.

Categories and Subject Descriptors

C.4 [Performance of Systems]: Measurement Techniques; C.1
[Processor Architectures]: General
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Performance and Experimentation
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1. INTRODUCTION

Temperature and power consumption are first order design pa-
rameters for modern high performance architectures. High opera-
tional temperatures and large power consumption present possible
limits to performance and manufacturability. Due to the impor-
tance of energy and thermal factors, modern architects have ex-
tended their performance-centric processor simulation infrastruc-
tures to accommodate models for power consumption [1, 11] and
thermal behavior [3, 10].

Currently, Wattch [1] and related tools are commonly used to
model the dynamic power consumption in modern processors. It
builds on top of CACTI [11], a very popular power model for
SRAM-like structures. For the estimation of static and leakage-
associated power consumption, designers employ packages such as
HotLeakage [13], which builds on top of the HotSpot [10] thermal
model and the Wattch [1] power model.

Each of these tools has been individually validated to a varying
degree, but the corroboration of a final integrated model is not an
easy process. This is mainly due to the fact that modern proces-
sors do not provide sufficient means to validate proposed power
and thermal models. This limitation stems from the nature of the
verification process associated with this kind of tools.

Validation of real-time processor metrics demands the measure-
ment of real-time response from the processor itself. Designers
obtain this real-time data using performance-monitoring structures
— such as performance counters. Using these structures, designers
can compare the real-time data collected from the processor with
that predicted by the simulation environment. For example, dif-
ferent performance counters can provide statistics like IPC and in-
struction cache miss rate, or more detailed statistics like load-store
queue replays. Those statistics make it possible to validate archi-
tectural simulators with existing processors.

However, this is not the case for power and thermal models. Un-
like performance statistics, modern processors lack structures to
gather power and thermal metrics. Adding sufficient power coun-
ters to obtain the needed level of granularity would consume a sig-
nificant amount of die real estate, and impact significantly both
power and processor performance.

To validate processor power models, the architecture community
would like to observe the actual temperature and power behavior of
proposed high performance systems. Specifically, it would be ideal
if actual power consumption and temperature statistics could be
gathered for each major processor floorplan block (L1 cache, reg-
ister file...) and further broken down by the leakage and dynamic-
related components.

Without the measurement of real-time response from the pro-
cessor, the best efforts of the architecture community are reduced
to best guesses and approximations when modeling the power and



thermal behavior of proposed architectural designs. Further, the
cumulative impact of power and thermal approximations may have
a significant effect on the resulting accuracy of the simulated sys-
tems. Therefore, many architects using integrated simulation envi-
ronments do not trust the absolute results predicted for the behav-
ior of their systems using current tools — relying instead on relative
trends in thermal and power behavior.

This paper proposes a solution to several of these dilemmas by
providing a method to empirically determine an accurate, real-time,
breakdown of power in the of-the-shelf microprocessor. We pro-
pose and evaluate an infrastructure to directly measure temperature
on any modern processor. The proposed measuring infrastructure
uses infrared cameras to capture transient temperature fluctuations.
We apply a genetic algorithm to find an accurate power consump-
tion map that correlates with the measured thermal map with a min-
imal degree of error. The resulting power measurements are further
broken down into dynamic power and leakage power. This infras-
tructure can be used to quantify the accuracy of power and thermal
models.

The paper has the following contributions: we propose an in-
frastructure to measure temperatures on modern high-performance
processors; develop image processing filters to increase the thermal
image accuracy; design genetic algorithms to find a correspondence
between temperature and power; and measure the floorplan power
on a real chip. As an example of application, we compare the re-
sults with existing CACTI power reports for AMD cache structures
and propose thermal modeling extensions to existing tools.

The rest of the paper is organized as follows. Section 2 describes
the proposed infrastructure ; Section 3 describes the setup param-
eters for our evaluation; Section 4 evaluates the infrastructure pro-
posed, and the accuracy of existing models; Section 5 covers re-
lated work; and Section 6 presents conclusions and future work.

2. INFRASTRUCTURE

This paper proposes a system capable of measuring, with a very
fine degree of granularity, temperature and power consumption of
modern high performance processors. The proposed infrastructure
measures processor temperature using an infrared camera. Due to
the fact that temperature is partially a function of power consump-
tion in microprocessors, it is possible to build an infrastructure that
translates temperature into power consumption. One of the main
challenges with this approach, however, is that there is no direct
translation function between temperature and power consumption.
Certain factors like heat spreading further complicate the analysis.
This paper explains in five major steps, the measurement setup and
algorithms required for the translation to happen — converting tem-
perature to power.

First, the proposed measuring setup (Section 2.1) captures the
chip temperature with an infrared (IR) camera. An IR-transparent
heat sink is used to allow the IR camera to obtain the die tem-
perature of the processor. This transparent heat sink is capable of
dissipating up to 100W, thus it is aptly suited for most modern high
performance processors. The setup is capable of capturing up to
125fps with a 10z10um spatial resolution, and it can be applied to
multiple chips with relative simplicity.

Second, we propose a thermal image processing (Section 2.2)
correction filter to improve measurement distortions. Modern IR
cameras achieve 320x200 pixel resolution with 28mK precision per
pixel. Nevertheless, cameras suffer from significant error in the
order of several degrees Kelvin between pixels. The significance
of the error in the measured data means that calibration for each
specific lens, objective, and temperature range setup is required.

Third, we build a detailed thermal model (Section 2.3) of the
chip being tested. In order to achieve this objective, the thermal
model includes additional chip package characteristics including
the newly developed infrared transparent heat sink.

Fourth, this paper aims at obtaining the power breakdown for
each floorplan block on the measured processor. The power model
(Section 2.4) used captures the dynamic and leakage power. To ob-
tain the dynamic power breakdown, we run different benchmarks
with multiple activity rates. To capture leakage breakdown, we re-
peat the same experiments at multiple ambient temperatures. Since
leakage is power dependent, the different experiments can provide
a breakdown in the three major components.

Fifth, to obtain a detailed power map from the thermal mea-
surements, we need the inverse operation, namely temperature to
power (Section 2.5) conversion. This is not a trivial task, because
there is no direct translation (1-to-1 mapping) between our mea-
sured temperature maps and the power maps. Our setup has n-to-1
mappings because not all the boundary conditions are known and
the equation being solved has to be fitted to every frame. To find
the power configuration that generates a specific thermal map with
the lowest error, we use a genetic algorithm that iterates multiple
(SPEC2000) thermal traces and compares them against the results
from our thermal simulator.

2.1 Measuring Setup

Temperature measurements are made both along the surface of
the processor and within the oil coolant that flows over the top of
the chip surface. To ensure data accuracy, an infrared (IR) cam-
era is used to measure the temperature as close as possible to the
transistor junction. Figure 1-(a) shows a picture with the major
components of the measuring setup.

An IR transparent heat sink is needed to keep the processor within
a safe temperature range. The heat sink is implemented using min-
eral oil (Fluka Mineral Oil 69808) that flows over the top of the
silicon substrate (Figure 1-(b)). Fluka mineral oil is determined to
be an appropriate coolant based upon its elevated transparency in
the infrared spectrum, high specific heat, relatively high thermal
conductivity, relatively low viscosity, and chemical safety. Even
though water has around 2.5 times the specific heat of mineral oil,
we can not use it because it is not transparent to infrared wave-
lengths. Fluka oil is designed for infrared spectrography and deliv-
ers excellent infrared pictures.

The chosen oil setup is selected as a balance between ease of
modeling and accuracy. Turbulent oil flow can remove more heat
than laminar flow, but it is significantly more difficult to model ac-
curately. For that reason, we create a laminar flow on top of the
processor core. The oil flows from the L2 cache to the processor
core. We maintain a high flow rate to minimize heat transfer from
the L2 cache to the processor core. Our measurements show less
than .1°C oil temperature increase from side to side of the chip.

The oil temperature is continually monitored with multiple dig-
ital thermometers (Dallas DS18B20) connected to the measuring
computer. The setup is capable of dissipating up to a 100W. We
keep 2 liters in the oil reservoir for the system, a small radiator
in the closed oil circuit is used to guarantee minimal temperature
oscillations during each run.

A detailed thermal map is obtained with an infrared camera (FLIR
SC-4000). Using the PC-Link (Gigabit Ethernet), the camera is
set up to capture and transfer 125fps with 320x200 pixels of spa-
tial resolution. This camera operates on the 3-5um wavelength
(MWIR) a range of light where silicon is partially transparent '.

'Si has a fairly uniform 55% transmittance from 1.5um to 6pm.
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Figure 1: (a) Measuring setup; (b) Oil-based heat sink with laminar flow.

As a result, the IR camera is capable of measuring the tempera-
ture “through” the chip being tested. Modern high performance
processors are manufactured using flip-chip designs > — exposing
the silicon substrate. Since the camera can measure temperatures
through the silicon substrate, using flip-chips greatly simplifies the
task of measuring junction temperatures.

2.2 Thermal Image Processing

Due to their operational characteristics, infrared cameras are cal-
ibrated to compensate for different material emissivities, lens con-
figurations, temperature ranges for the object/material measured,
and a host of other factors. One approach for calibration is to
have the infrared measuring device calibrated for the specific setup
by the manufacturer. However, this ignores the temperature range
of the object and increases the likelihood of measurements being
made outside of the calibrated range. To solve this problem, we
perform an in-house calibration.

Indium antimonide (InSb) sensors available on IR cameras, like
the one found in the FLIR camera used in the measurement setup,
have a high sensitivity per pixel (25mK). This corresponds to the
camera’s optimal accuracy once it is correctly calibrated. To com-
pensate for the camera error, we perform two controlled measure-
ments: one with cold (16°C) and one with hot (71°C) mineral oil on
top of an inactive (off) processor’s silicon substrate. Figures 2-(a)
and 2-(b) show the IR thermal measurements when the processor is
powered off. We observe that for cold oil (Figure 2-(a)) the center
of the image closely resembles the measured temperature while the
side pixels can have up to 6°C error (288K vs 294K). The opposite
effect is shown when the camera measures a uniformly hot mineral
oil (345K vs 335K).

The camera specifications indicate that a linear ("Temp" = A %
"IR Temp" + B) correction should be applied for each camera
pixel. Our image filter automatically generates a linear correction
factor to compensate for the inaccuracies. A secondary filter is used
to compensate for the optical distortion induced by the lens setup.

2Low power chips tend to be wire-bond, while more high-
performance chips tend to be flip-chip.

2.3 Thermal Model

The thermal model used in this paper requires a high degree of
accuracy and must correctly reflect the effects of the liquid cool-
ing setup. To do this, we extend the functionality of HotSpot [10]
— currently the most popular tool used by the computer architec-
ture community — to perform thermal modeling. The base model
in Hotspot is extended it in two very significant ways. First, we
expand the model to capture the effects of silicon-on-insulator fab-
rication technology, plus chip interconnect and packaging. Second,
the metal heat sink is replaced by a laminar oil flow.

Laminar Oil Flow
Bulk Silicon
Transistor Layer
Metal Interconnect
Package C4s and C5s
Package Printed Wiring Board

Package Pins

Figure 3: Thermal model layers.

To model the effect of the various chip layers and packaging,
we introduce a new layered model (Figure 3); The transistor layer
models the thermal effect of the silicon-on-insulator technology
used for the processor in the setup analyzed in this paper. Since
the package pins and the C4s have a significant specific heat, we
add them to the model to better capture transients.

To model the liquid cooling, we estimate the local convection co-
efficient of the oil flowing over the chip. This is done by assuming
laminar flow across the chip in Equation 1. Where, k is the thermal
conductivity of oil, Pr is the Pradtl Number of oil, Re is Reynold’s
Number of oil, and L is the chip length.

2%k
L

The Reynold’s number is given by Equation 2 where V' is the
upstream liquid velocity and v is the oil viscosity.

i (0.332)Re'/? prt/? (1)



Figure 2: IR Measured temperature with low (Left), and high temperature (Right) behavior for IR camera. (Tempera-

ture scale in Kelvin)
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To compute the convection coefficient demands that the upstream
velocity be known. To find the upstream velocity, we assume a
two-dimensional setup, where the oil flows from a jet with speci-
fied flow-rate. Using conservation of energy, momentum, and flux,
the upstream velocity is determined.

2.4 Power Model

We break down power consumption into two components: leak-
age and dynamic power. While dynamic power is only a function
of activity, leakage power has many factors. A BSIM3 [2] model
provides the leakage for each gate. To compute the exact leakage
power for a full block, transistor stacking and other factors need to
be considered. A full processor floorplan block could be approxi-
mated as follows:

Re
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In Equation 3, Py is a parameter of the floorplan block, Vps is
the voltage difference between drain and source, Vs is the voltage
difference between gate and source, and V, s is the offset voltage
for a minimal region, n is the sub-threshold swing coefficient, and
vt is the temperature dependent thermal voltage, at temperature T
(v = %). All three voltages (Vps, Vas, and V,5f) are inde-
pendent of temperature, the only temperature dependent factors in
the leakage equation are V;;, and v7. All the other factors are ther-
mally independent. As a result, we could approximate the leakage

Preqr Pleqro
per floorplan area as Proapo * T2 % e~ 7 % (1—e™ T )

Equation 4 shows the expected power consumption per floor-
plan block and frame pair. Pgy,, is the dynamic power consump-
tion. To compute the leakage factor, three parameters are required:
Pieakos Pleaki, and Pieqr2. Although possible in some systems,
our model does not share any leakage parameter across blocks be-
cause each floorplan block may have a different threshold voltage
and/or supply voltage. While leakage parameters stay constant for
all the frames, Pgyy, is dependent of the processor activity rate, as
a result, each program phase has a unique dynamic power.

Power = Payn+ Prearo*T? xeFeart/T) y (1 — ePrearz/Ty (4

2.5 Temperature to Power

There has been substantial work done on models for the power to
temperature translation problem, the modeling of the reverse prob-
lem of converting temperature information into power for mod-
ern processors has been explored at a much smaller scale [6]. To
our knowledge, no previous work provides a model to perform
the translation of transient temperature measurements into tran-
sient power consumption for a modern processor. Unlike previous
proposed work that rely on simpler steady-state thermal models,
transient thermal models may have a n-to-1 power-to-temperature
mapping (a temperature map can be generated from multiple power
maps) for systems where not all the boundary conditions are known.
Some boundary conditions can not be determined because the ther-
mal setup only obtains the silicon substrate/junction temperature.
This is, it can not measure the temperature for the pins, package,
and other layers modeled. In order to solve this optimization prob-
lem, we use a genetic algorithm (GA) to optimize our temperature
to power model.

Genetic algorithms are very effective tools for optimization prob-
lems. Although they can not claim to find the best solution, GAs
can tolerate significant measurement error. In our proposed sys-
tem, the GA finds the power equation (Equation 4) parameters:
Piearo, Pieak1, and Peqr2 for each floorplan block, and the Py,
for each floorplan block and program phase pair. This is achieved
after gathering results for several benchmarks at different ambient
temperatures (T) and processor activities (AR).

Genetic algorithms start using a set of hand crafted candidate in-
dividuals or solutions. For each generation during the algorithm’s
execution, its modus operandi is as follows: a fitness value is cal-
culated for each individual so that the fittest members of the pop-
ulation have a higher chance of mating, and individual’s fitness
is usually assumed to be directly proportional to a defined error
model. After members are paired, children are produced by com-
bining (crossing-over) the parents genetic material. A randomly
selected set of the fittest children is selected for survival. To avoid
getting stuck on local minima, suboptimal individuals make it into
the next generation, as well as some of the fittest parents from the
previous generation. Members of the population are possible can-
didates for mutation in elements of their genetic information. In
our case, the characteristics for legal mutations are predefined, this
ensures that the search space is bounded. In addition, we early kill
combinations/mutations that produce aberrations due to mutation



or cross-over. After the overall fitness of the population has ceased
to improve for more than a predetermined number of generations,
the search stops and the fittest member of the final generation is
assumed to be the optimal parameter configuration for our thermal
to power translation model.

The previous paragraph describes a generic genetic algorithm.
To further understand the details of the GA used on this paper, we
describe the structure of an individual (solution), the fitness value,
the mutate process, and the early kill process as follows.

Genes specify a possible solution for a problem. In this case, the
power equation (Equation 4) is the problem to be solved. We at-
tempt to select the combination of Pieqko, Pieakis Pleak2, and
Pjyn values that when input into the power equation (Equation 4)
and applied to each temperature frame, minimizes the cumulative
error across all the frames between the reported temperature in the
thermal model and empirical data from the IR camera. To accom-
plish this, parameters are assigned to genes that are allowed to
evolve. In this experiment, each floorplan block has a unique power
equation, where Pieqko, Pleak1, and Pjeqk2 are shared across all the
frames; therefore, each of these parameters have a unique gen. Fur-
ther, there is a unique Py, for each program phase and floorplan
block pair, where each program phase has a unique processor ac-
tivity. To reduce the mutation search space, certain restrictions are
placed upon the range of possible mutations. Since program phases
have nearly the same activity regardless of temperature, Pgy., is
shared for all cases where a given application is rerun at a new
temperature. To further reduce the mutation search space, we re-
strict the Pjeqk1 and Preqk2 values. Since both parameters are tech-
nology dependent, they will be constant across the entire chip. To
reduce the search space, Pjeqr1 and Pieqr2 are shared for the whole
chip, and each floorplan block can adjust the shared value within a
limited range.

Fitness Value provides a numeric error for each individual. For
each frame fed to the GA, the power equation has two fitness func-
tions: one for power and a second one for temperature. The power
fitness finds the average and standard deviation power consumption
discrepancies between the power equation and the multimeter mea-
surements. The temperature fitness finds the average and standard
deviation between the junction temperature reported by the thermal
model and the infrared camera measured temperature. We keep the
standard deviation in addition to the average error because between
two individuals with similar average error, we give a higher fitness
score to the individual with the lowest standard deviation.
Mutation randomly changes the value of a set of genes. Each value
from the power equation is expressed as a real value. To reduce the
search space, the mutation only can deliver reasonable values. E.g.:
Piyn and Pieqro only have positive values.

Early Kill removes clearly wrong individuals from the pool. The
fitness function will remove bad individuals too, we do an early kill
to avoid the costly thermal fitness computation. Floorplan block
genes with 10 times more power density than the average power
density are early killed. Also, individuals with more than 75% error
on the power fitness function are also killed.

3. EVALUATION SETUP

While the measuring setup section (Section 2.1) explains the in-
frastructure required to measure any modern processor, this section
explains the measured configuration parameters. Table 1 summa-
rizes the main processor and thermal parameters.

Figure 4 shows floorplan blocks used on the evaluation. L1I and
L1D stand for instruction and data cache respectively. The IRF
and the FRF stand for integer and floating point register file re-

[ Parameter | Value | Parameter | Value |
CPU AMD/Athlon 64 Package 754
CPU Model | AMN2800BIX5AR || Vdd 1.4v
Technology | 130nm SOI Frequency | 1.6GHz

Table 1: Main processor and thermal model parameters.
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Figure 4: AMD Athlon 64 core floorplan blocks.

spectively. While the Clock Distribution block correspond to the
clock distribution circuitry, the Clock block is clock-generation re-
lated. Both blocks (Clock and Distribution) are fairly independent
of processor activity. The detailed information for larger blocks
like the Fetch block are not freely available, so we cluster the fetch
(branch predictors and pre-decode logic) into three blocks. The in-
frared camera captures 320x200 pixels resolution but the genetic
algorithm only computes the power for each floorplan block. As
a result, we average the temperature for each block before passing
this information to the genetic algorithm. It is important to note
that the floorplan is a mirrored version of the AMD floorplan com-
monly published. The reason is that we are measuring “through”
the substrate, which flips the image.

3.1 Thermal Modeling

For the thermal simulator, we use the package shown in Figure 3.
The interconnect layer models the compounded thermal character-
istics of all the metal layers, assuming an interconnect layer stack-
up that closely matches an IBM 130nm process. The thermal ef-
fect of the interconnect metal density is captured on a per floorplan
block basis.

The remaining layers model the thermal effects of the chip pack-
age. Using the AMD 754-pin non-lidded micro PGA, we model the
effects of the package printed wiring board (PWB)), its substrate and
pins. While the heat sink is the primary heat flow path, the pins add
a secondary flow path through the processor.

3.2 Applications

For evaluation purposes, we gather thermal and power statistics
for the first 20 seconds of several benchmark applications measured
when running under Linux on our test system. When the applica-
tions are launched, the serial port triggers the multimeter for power
data capture. As a result, we have the measurements synchronized
with the application initialization.

To have a diverse set of instruction streams we execute 14 dif-
ferent applications. We execute the majority of SPEC 2000 bench-
marks (ammp, applu, apsi, bzip2, crafty, equake, gap, gzip, mcf,
mesa, mgrid, parser, twolf) and a matrix kernel. This kernel per-
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Figure 5: Thermal and power measurements for the first 10 seconds of applu (a) ; temperature profile for the integer
scheduler (Sched), data cache (DL1), floating point scheduler (FPSched), clock generation (Clock), memory controller

(MC), and instruction cache (IL1) for applu (b) and apsi

forms a matrix multiplications at 1Hz frequency (0.5 seconds ma-
trix multiplication, 0.5 second idle).

4. EVALUATION

The main objective of the paper is to propose an infrastructure
to capture temperatures with high resolution and obtain detailed
power maps. The evaluation focuses on the accuracy of the pro-
posed measuring setup and highlights potential applications. This
section begins by presenting the main results. Then, it proceeds to
show the behavior of the image processing algorithms. We con-
tinue with a list of recommendations for thermal models, and we
finish by comparing the power results with CACTI 4.2 [11].

4.1 Main Results

In order for the genetic algorithm to find a correct power con-
sumption breakdown, the processor executes the same set of ap-
plications under two different sets of ambient (oil) temperatures.
Figure 5-(a) shows the temperature and power profile for the first
10 seconds of execution (1250 frames) of applu from SpecFP2000.
The solid lines correspond to a run where the oil was heated to
33.5°C, the dashed lines correspond to a run with a 22°C oil tem-
perature. Even though the oil temperature is just 11.5°C, the com-
pounded thermal difference is slightly higher (13°C), which is the
expected behavior. The overall power consumption is higher on the
high temperature (HT) run than on the low temperature (LT) run.
This is due to the fact that as we increased the oil temperature, the
leakage power also increased. The plot shows that on average for a
13°C increase, total power consumption increases by 5.3%.

Figures 5-(b) and 5-(c) show the average temperature for several
floorplan blocks for the respective execution of applu and apsi. The
floorplan blocks, ordered from highest to lowest average tempera-
ture, are the integer scheduler (Sched), data cache (DL1), floating
point unit scheduler (FPSched), clock generator (Clock), memory
controller (MC), and instruction cache (IL1). For most of the appli-
cations, the scheduler is close to 10°C hotter than any other floor-
plan block. For both applications, the temperature across blocks
is somewhat correlated. However, after a 1.5 second execution for
applu (Figure 5-(b)) and 4 second execution for apsi (Figure 5-(c)),
the integer scheduler decreases temperature while the floating point
scheduler temperature increases. These phase changes correspond
to periods of time when the application increases the percentage of
floating point instructions being executed. The genetic algorithm
correctly finds a phase where the access to the power consumption
on the integer scheduler decrease while the power consumption on
floating point scheduler increase.

(¢).

The genetic algorithm (Section 2.5) uses the temperature and
power traces to find the power equation (Equation 4) parameters
for each floorplan block. Table 2 shows the maximum, minimum,
and average total power, dynamic power, and leakage power for
each floorplan block.

For the running applications, the minimum total power consump-
tion (6.09W) (2nd column) is lower than the minimum total power
consumption measured by the multimeter when the processor is
idle at low oil temperature * (8.56W). Similarly, the maximum total
power consumption (93.58 W) (3rd column) is higher than the max-
imum power consumption measured (47W). However, this discrep-
ancy is due to the fact that floorplan blocks never exhibit minimum
and maximum activity simultaneously. In the event that this were to
happen, the multimeter empirical and GA value would more closely
match. We do not observe such behavior for the SPEC applications.
On average, the AMD processor consumes 31.92W total power (4th
column).

The minimum dynamic power (5th column) is the smallest value
found by the GA across all the frames. Due to the fact that sev-
eral frames include an inactive/idle processor activity, the mini-
mum dynamic power consumption corresponds to the standby or
idle dynamic power. The highest maximum dynamic power con-
sumption block is the Fetch 0 block (12W) closely followed by the
L2 cache block (11.87W). The fetch block includes the branch pre-
diction and the instruction decode from x86 to microcode. The next
highest blocks are the level one caches (L1D and L1I), the memory
controller, and the scheduler.

The maximum dynamic power (6th column) reports the max-
imum dynamic power found for any frame, while the average dy-
namic power (7th column) takes into consideration the average floor-
plan block activity found on the SPEC applications executed. A
very interesting case is the memory controller where the maximum
dynamic power is 4.98W, while the average dynamic power is just
0.43W. The reason is that requests to the memory are infrequent but
very costly. A similar conclusion can be drawn for the L2 cache.
Other blocks like the integer scheduler (Sched) or the integer reg-
ister file (IRF) have a smaller difference between maximum and
average because these structures are more frequently utilized.

The difference between the minimum leakage power (8th col-
umn) and the maximum leakage power (9th column) is not as sub-
stantial as the difference found on the dynamic power. Due to
the fact that the differential in leakage power is due to tempera-
ture changes. For a given floorplan block the same frame that has
minimum dynamic power may not be the same frame that has min-

Lower oil temperature decreases leakage power



Total Power Dynamic Power Leakage Power Leakage Constants

Block min max avg | min max avg | min max | avg || 10%2Pcaro | Preaki | Pleak2

Memory Controller || 0.18 5.26 0.64 | 0.03 4.98 043 ] 0.12 0.33 | 0.22 5459 -2361 -232

L2 2.69 | 15.59 6.36 | 0.26 | 11.87 2.88 | 2.39 4.67 | 3.48 20771 -1869 -276

L1D 0.79 9.12 2.39 | 0.02 7.96 1.23 | 0.68 1.67 | 1.17 6291 -1881 -249

L1I 0.26 8.23 0.76 | 0.02 7.71 0.39 | 0.21 0.55 | 0.37 4117 -2178 -365

Inst. Pick 0.02 1.43 0.46 | 0.01 1.39 0.44 | 0.01 0.04 | 0.02 2878 -3012 -319

DTLB 1 0.03 2.70 1.71 | 0.01 2.64 1.67 | 0.01 0.06 | 0.03 1906 -2773 -319

DTLB 0 0.04 3.07 0.85 | 0.01 2.99 0.78 | 0.03 0.12 | 0.07 8095 -3012 -349

LSQ 0.06 3.07 0.70 | 0.01 2.94 0.62 | 0.03 0.14 | 0.08 2720 -2544 =271

Fetch 0 0.04 | 12.03 6.93 | 0.03 | 12.00 6.91 | 0.01 0.03 | 0.02 1961 -3012 -291

Fetch 1 0.08 3.15 0.92 | 0.01 3.01 0.81 | 0.06 0.16 | 0.11 397 -1807 -275

Fetch 2 0.01 2.04 0.34 | 0.01 2.03 0.34 | 0.00 0.01 | 0.00 417 -2964 -322

Sched 0.06 3.25 2.25 | 0.01 3.08 2.15 | 0.04 0.18 | 0.10 6296 -2795 -267

IRF 0.30 2.68 1.77 | 0.01 1.85 1.24 | 0.25 0.86 | 0.53 3778 -2082 -299

ROB 0.02 1.02 0.43 | 0.01 0.99 0.41 | 0.01 0.03 | 0.02 2015 -3012 -318

ALUs 0.17 2.03 0.68 | 0.01 1.70 0.38 | 0.14 0.47 | 0.29 4281 -2324 -371

Bus 0.33 4.76 0.89 | 0.01 4.29 0.43 | 0.28 0.67 | 0.46 2105 -1807 -232

FPSched 0.33 2.65 0.83 | 0.01 1.81 0.23 | 0.32 0.87 | 0.60 3778 -1982 -305

FRF 0.06 2.93 0.33 | 0.01 2.83 0.23 | 0.05 0.15 | 0.10 4046 -2538 -232

SSE 0.06 1.22 0.27 | 0.01 1.11 0.18 | 0.05 0.14 | 0.09 402 -1844 -302

FPO 0.17 1.97 0.47 | 0.01 1.71 0.21 | 0.15 0.36 | 0.26 1278 -1909 -373

Clock 0.15 1.36 0.54 | 0.01 1.07 0.32 | 0.13 0.32 | 0.22 1304 -1943 -297

Clock Distrib. 0.24 4.01 1.40 | 0.03 3.49 1.03 | 0.18 0.58 | 0.37 3522 -2632 -288

6.09 | 93.58 | 31.92 | 0.57 | 83.46 | 2331 | 5.14 | 12.40 | 8.61 3953 -2398 -297

Table 2: Power values obtained from the genetic algorithm.
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Figure 6: Power prediction error per application.

imum leakage power. Thus, Adding the minimum leakage and dy-
namic power does not correspond to the minimum total power. The
same observation holds true for maximum power. Leakage repre-
sents 27% of the average power consumed by the applications in
the evaluation.

To measure the accuracy of the predicted model, Figure 6 presents
the overall error in power consumption per application. For all the
benchmarks, the error is always lower than 1%. The error is defined
to be the difference between the power found by the genetic algo-
rithm and the power measured by the multimeter. The multimeter
measures the current going from the power supply into the pro-
cessor, however the voltage regulator module (VRM) between the
power supply and the processor dissipates over 10% of the power
during the voltage conversion. The efficiency rating for the volt-
age regulator is taken into account in order to correct the power
measured by the multimeter.

A more detailed view of the source of errors is presented in Fig-
ure 7-(a), which plots the power discrepancy between the output
generated by the genetic algorithm and the measurements from the
multimeter. This plot summarizes the accuracy for the power pre-
diction by joining all the application frames with distinct activity
rates together. The frames in the plot are ordered from low to high
power consumption. We observe that the genetic algorithm is able

dered from lower to higher power consumption. The plot shows the
power breakdown between dynamic and leakage for each frame.
Leakage dominates on the frames with the lowest power consump-
tion because the activity rate is very low on these frames. As ex-
pected, leakage increases as dynamic power increases. The reason
is that a higher power consumption increases the temperature which
also increases leakage power.

4.2 Thermal Imaging

This section shows the raw thermal images and provides addi-
tional insights on the image processing performed on this paper.

As section 2.2 states, the IR camera does not have the same ac-
curacy over all the pixels. To compensate for this error, we perform
a different linear correction for each pixel. Figure 8-(a) shows the
corrected thermal image for a single frame, including a floorplan
overlay. A secondary correction filter also accounts for the regis-
tration of the camera against the plane of the processor.

The overlay on Figure 8-(a) does not cover the whole picture.
The upper part of the figure shows part of the L2 cache. The pic-
ture seems to indicate that the pixels outside the die visible on the
left and lower part are as hot as the die itself. The measurements on
these areas have two artifacts. First, the emissivity is different out-
side the die area. Second, the fluid has turbulence outside the die.
This turbulence creates fluctuations in the thermal measurements.
As a result, measurements outside the die area are not considered
accurate in our setup. Thus, they are ignored by the genetic algo-
rithm because they are outside the processor’s core block.
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Figure 8: Temperature with overlapped floorplan (a); Hottest captured frame (b); and its average temperature per

block (c).

Figures 8-(a) and 8-(b) show that there is temperature variabil-
ity inside the floorplan blocks. It is this variability that prompted an
extension to our thermal model so that each floorplan block could
be modeled with fine granularity. Therefore, even though we re-
port the average temperature for each floorplan block, our thermal
model internally computes multiple temperature points for each
block as explained on Section 2.3.

Figures 8-(b) and Figure 8-(c) show the frame from crafty with
the maximum temperature measured. On this frame the register file
reaches 84°C. Although the thermal model has a finer granularity,
the genetic algorithm uses the average temperature per floorplan
block to reduce the computing requirements as shown on Figure 8-

©).
4.3 Thermal Modeling Extensions

A possible use of the proposed thermal infrastructure is to pro-
vide a detailed thermal evaluation of existing models. To do so, a
performance model and power model must be created which can
be coupled with a thermal model. However, we are unable to per-
form this type of verification because our simulation infrastructure
is unable to perform adequate performance modeling of the AMD
Athlon processor used through the thermal measurements. Never-
theless, we are able to observe the thermal behavior of the AMD
processor and suggest extensions for existing thermal simulation
infrastructures.

Figure 9-(a) shows the thermal delta map * when a matrix multi-
ply is executed. In this image, the activity is centered on the integer

*A delta map is the temperature difference between the current and
the previous infrared frame.

scheduler. As the scheduler gets warmer, the heat is propagated
through the silicon substrate. The clock distribution network also
gets warmer. Since the clock distribution is fairly independent on
processor activity >, a major source for heat in the clock distribution
is heat generated from the scheduler. The heat propagates faster
through the clock distribution network because it has a higher metal
density. As a result, we feel that higher accuracy thermal models
not only need to model metal layers but they also need to model
different transistor/metal densities for each floorplan block.

The architecture research community integrates thermal models
like Hotspot with architectural simulators. In most evaluations, re-
searchers model less than one billion instructions. For several ap-
plications this corresponds to 1 second or less. Figure 9-(b) and
Figure 9-(c) show that this can problematic. Both figures show the
measurement results for the first 10 seconds of execution (1250
frames at 125fps). The figures include the average temperature
for the whole core, the temperature for the register file, and the
temperature for the data cache. The plots also include the power
consumption for the whole CPU. Figure 9-(b) shows that the tem-
perature decreases just 3°C (from 77°C to 74°C) when the power
consumption decreases from 45W to 40W for 0.5 seconds. This
means that substantial simulation time (several billions of instruc-
tions) is required to provide any interesting temperature oscillation
like the one observed on wupwise. Both wupwise and apsi require
over 2 seconds to warm up the chip.

The implication of Figure 9-(b) and Figure 9-(c) measurements
is that to have realistic thermal simulations architects should model
several seconds of simulated execution. It is important to consider

> ACPI power saving techniques are deactivated.
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Figure 9: Measured thermal delta map when starting matrix multiply (a); Thermal and power measurements for the

first 10 seconds of apsi (125fps) (b) and wupwise (c).

that our simulations use a liquid cooling instead of a more tradi-
tional heat sink. A traditional heat sink configuration may require
additional simulation time. The reason is that metal heat sink has a
higher potential for heat storage. In our configuration, the coolant
is kept at a nearly constant temperature and little heat is transfered
back to the silicon substrate.

4.4 CACTI Comparison

HotLeakage [13] and CACTI [11] are the two most popular tools
used by architectural simulators to model leakage and dynamic
power respectively. In this section, we compare our measured re-
sults from the AMD processor with results obtained from HotLeak-
age and CACTIL

We use the latest version of CACTI available (4.2) to generate
the power for the AMD Athlon data cache. The latest CACTI has
several improvements and also reports leakage power. The Athlon
data cache is an 8 bank 64KByte 2 way set associative cache with
64byte cache lines. The L1D can provide two load and/or stores
per cycle as long as there is no bank conflict. Once the frequency
is adjusted to the frequency of the AMD processor (1.6GHz) and
the voltage (1.4V), CACTI reports a 1.5W maximum dynamic read
power. The maximum power consumption for the data cache (L1D
from Table 2) is 7.96W. This corresponds to the frame with the
maximum activity. From the thousands of frames evaluated, we
assume that one frame had the maximum L1 data cache that the
Athlon can sustain. Since the Athlon can perform a load and a
store to the data cache every cycle, the power per access for the
data cache is 3.48W. This means that there is a 2.3 times variation.
We believe that this discrepancy is primarily due to differences in
technology parameters and a custom AMD cache design that can
handle two operations per cycle without being dual ported.

As previously said, CACTI 4.2 also reports the leakage con-
sumption. For the analyzed data cache, CACTI reports 0.144W at
100°C. To compute the leakage at 100°C (373°Kelvin), we fill the
leakage equation with the data from Table 2 (62912107° % 3732 *
(I & (1— (T3 )) = 2.75W). The leakage estimation by the
genetic algorithm is approximately 19 times higher than the leakage
estimated by CACTI. Due to the big difference in leakage model-
ing, it may be interesting to measure different processor caches to
gain further insight.

The leakage component from equation 4 is derived from a BSIM3
equation. This is the same type of equation used by tools like

HotLekage and CACTI 4.2. To better understand the discrepancy
between CACTI and our measurements, we compute the average
Piear1 and Piegqi2 used by CACTI for a 130nm. Since CACTI
models several transistor types, we compute the average transistor
for a cache like the Athlon cache. The results are Pjeqr1 = —455
and Pieqr2 = —15136. These values are different to the aver-
age values that the genetic algorithm finds Pieqr1 = —2398 and
Piear2 = —297 (Table 2).

Our proposed model finds different constants for each floorplan
block. HotLeakage and CACTI keep the same technology param-
eters for all the processor floorplan blocks. Since modern proces-
sors have multiple voltages and threshold domains, adding multi-
ple threshold voltages to the existing tools may be a feasible task.
Analyzing several processors and technologies with our proposed
infrastructure can find “typical” changes between floorplan blocks.
These changes can be incorporated to existing models to improve
accuracy.

S. RELATED WORK

HotSpot [10] is the most popular thermal model used by the com-
puter architecture community. We build on top of it to extend the
thermal models. In this work, we do not propose a new thermal
model — just extensions on HotSpot model to capture additional
characteristics found in our measurements.

Real power consumption measurements are a very useful tool.
The original work by Isci et al [7] and later extended by Wu et
al [12] measure the overall power consumption with a multimeter.
Together with the activity rate captured from the processor perfor-
mance counters, they provide the total power breakdown for each
processor floorplan area. Our measuring setup builds on top of
them as we also gather overall power consumption. The key dif-
ferences is that our setup provides a detailed power breakdown and
therefore provides dynamic and leakage power for each floorplan
block.

Chung et al [4] build on top of models that use performance
counters [7] to generate detailed thermal map. Their work com-
pares a less compute intensive regression model against a HotSpot
thermal map result.

Translating from temperature to power is known as an inverse
heat transfer problem. Due to the potential uses, there is a signif-
icant effort by the research community to provide different mod-
els [8]. The most related work is done by Hamann et al [6]. This



work measures the temperature on a chip with a infrared camera.
Their setup is similar to ours but they do not provide enough details
on the materials/components used. Nevertheless, the key difference
is that their setup only performs conversions from temperature to
power for steady-state thermal maps. They do not perform temper-
ature to power conversion for transient thermal maps. In addition,
their power model does not provide a breakdown of power con-
sumption by dynamic and leakage power.

Hamann setup only performs conversions from temperature to
power for steady-state thermal maps. They do not perform temper-
ature to power conversion for transient thermal maps. Steady-state
can be viewed as a special transient case. While the steady-state has
a 1-to-1 mapping (a temperature map has a unique power map), the
transient has a n-to-1 mapping (a temperature map can be gener-
ated from multiple power maps). There are two fundamental rea-
sons for the n-to-1 mapping: First, not all the boundary conditions
are known (condition needed to have a 1-to-1 mapping) because the
infrared camera only can measure the temperature for the transis-
tor/bulk layer. It can not measure the temperature for pins, package,
and other chip layers. As a result, the boundary conditions are not
known. Second, the equation to solve (power equation) is being
adapted for all the frames. If the equation to solve changes (a dy-
namic system), the solution also can have a n-to-1 mapping.

Genetic algorithms [5] have multiple applications for optimiza-
tion problems. Raudensky [9] showed that GAs can perform the
conversion from temperature for power for uni-dimensional topolo-
gies. This work extends the model to modern three dimensional
processors.

6. CONCLUSIONS

This paper provides a method to obtain a breakdown of the power
dissipation of modern processors into its leakage and dynamic com-
ponents based on thermal measurements. The data obtained from
this type of work can greatly benefit the computer architecture com-
munity.

As the evaluation shows, the measurement setup can help to im-
prove energy and thermal models. After observing the temperature
profile from a working processor, we suggested several improve-
ments to existing simulation infrastructures. The results show sit-
uations where the heat propagates faster through floorplan blocks
with higher metal density. This seem to imply that detailed sim-
ulations should include metal density. More important for the ar-
chitecture community is the simulation time. Our measurements
imply that architects should execute several seconds of simulated
time in order to have interesting thermal oscillations.

In addition, the paper provides power consumption breakdowns
from a real processor (AMD Athlon 64). The proposed measuring
setup (Section 2) details all the steps, tools, and processes required
to perform additional measurements on additional processors. The
evaluation shows that the difference between the power consump-
tion estimated and that the one predicted by the genetic algorithm
is less than 1% on average. We feel that measuring temperature di-
rectly from processors and estimating the power consumption has
a great potential for the computer architecture community.
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