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Abstract—
Large Language Models (LLMs) are transforming code

generation and documentation processes across programming
languages, including hardware description languages (HDLs).
However, existing benchmarks primarily focus on individual
HDLs, limiting comprehensive evaluations. To address this,
we introduce HDLEval, a versatile benchmarking system that
evaluates LLM performance across multiple HDLs, enabling
meaningful comparisons. By sharing standardized test benches,
HDLEval ensures consistent performance assessments between
HDLs, offering insights into language-agnostic LLM capabilities.

This system employs formal verification to verify generated
code and leverages prompt engineering techniques to overcome
syntactic differences between HDLs. HDLEval supports scal-
able evaluation, making it adaptable for current and future
HDLs. Our experiments demonstrate how HDLEval can identify
strengths and weaknesses in LLM-generated logic, providing a
framework for improving HDL programming with LLMs.

Index Terms—LLM, Verilog

I. INTRODUCTION

Recent advancements in Large Language Models (LLMs)
such as OpenAI’s GPT, Google’s BARD/PALM, and Meta’s
Llama are transforming the programming landscape by en-
hancing code generation, documentation, and assisting new-
comers in navigating complex coding frameworks. However,
the integration of LLMs with Hardware Description Languages
(HDLs) faces significant challenges due to the specialized
syntax and limited documentation within the HDL community,
hindering their broader application in hardware design.

Hardware Description Languages are crucial for designing
microchips and other embedded systems but often cater to
a niche community. The distinct characteristics and non-Von
Neumann architecture of HDLs add layers of complexity in
code generation for LLMs. Given the potential of LLMs to
reduce entry barriers and streamline hardware design, adapting
these models for more effective interaction with various HDLs
is essential.

This work introduces HDLEval, a novel benchmarking
system that evaluates LLMs across multiple HDLs. Unlike ex-
isting benchmarks like HumanEval [2] and VerilogEval, which
are confined to popular programming languages or specific
HDLs such as Verilog, HDLEval adopts a language-agnostic
approach. It enables the same set of problems, formulated in
plain English, to be tested across different HDLs, facilitating
direct comparisons of performance and adaptability.

HDLEval not only expands the application scope of lan-
guage models in hardware design but also incorporates formal
verification over traditional unit tests. This change caters to

the need for rigorous validation of code generated by LLMs
across varied languages and platforms. By categorizing the
benchmark problems into combinational and pipelined tests,
HDLEval distinctly outlines the capabilities of LLMs in man-
aging different complexities within HDLs—the combinational
tests tackle straightforward logic synthesis, while the pipelined
tests present challenges with sequential logic and timing-based
constraints, vital for real-world applications.

Furthermore, HDLEval’s adaptable architecture permits fu-
ture expansions to accommodate emerging HDLs and evolving
language models, ensuring its long-term utility in advancing
both fields.

LLMs are typically evaluated using benchmarks like Hu-
manEval to quantify their coding capacity. While HumanEval
tests Python, the recently proposed HumanEval-X [11] extends
coverage to multiple languages. However, it neglects HDLs,
focusing only on popular languages. VerilogEval and RTLLM
follow the HumanEval model but use Verilog tests instead
of Python. HDLEval, however, extends these ideas with
significant modifications to support multiple HDLs through
tests written exclusively in English, enabling an equitable
assessment across any HDL and dividing the problems into
combinational and pipelining tests to better delineate the
current limitations of LLMs with HDLs.

Moreover, HDLEval utilizes formal verification, instead of
unit tests, to validate code generation, allowing for inter-
language translation testing—a complex task in popular lan-
guages but facilitated in HDLs by tools that check for logic
equivalence in Verilog, which all HDLs ultimately generate.

II. RELATED WORK

HDLBits [1] is a website with problems and tests to teach
students the basics of Verilog. HDLEval and VerilogEval have
several tests derived from HDLBits. In HDLEval, many of
the HDLEval-Human tests are from HDLBits. For generated
HDLBits solutions to do a logical equivalent check versus a
golden model, we either use solutions found on GitHub [10]
that do not have a restrictive license or we create solutions
ourselves.

HumanEval tests have the same coverage problem as Ver-
ilogEval. HDLEval uses Logic-Equivalent-Check (LEC) to
formally check equivalence, but other works [3] have observed
the same limitation and extended the HumanEval tests to
improve coverage.

VerilogEval [4] and RTLLM [5] propose a test set to eval-
uate Verilog designs. VerilogEval has two sets of problems:



Human and Machine. Human consists of human-generated
tests, while Machine is GPT-3.5 Turbo tests translated to
English from existing Verilog code. RTLLM has a different
set of problems divided into arithmetic and logic. Both use
simulation for testing correctness and evaluate only Verilog
code. RTLLM claims that the tests could be used for languages
like Chisel, but the paper lacks basic explanations, like how
to address issues with matching Chisel generated IOs.

III. HDLEVAL

HDLEval aims to develop a comprehensive suite of tests
applicable to various HDLs, providing insights into the chal-
lenges associated with LLMs and HDLs. The authors intend
to continuously release new HDLEval versions and make it
available as an open-source resource.

A. Multi-HDL Tests

HDLEval distinguishes itself as an innovative, language-
agnostic benchmarking framework that supports various HDLs
without bias towards any specific syntax. Unlike VerilogEval,
which focuses solely on Verilog, HDLEval offers a unified
testing methodology that enables benchmarking of multiple
HDLs, addressing challenges that arise due to syntax-specific
constructs. For instance, VerilogEval includes a D latch im-
plementation using an ”always” block, a construct that is not
universally supported across all HDLs. HDLEval removes this
bias by providing language-neutral English problem descrip-
tions.

To illustrate this approach further, consider a traditional
VerilogEval test that requires implementing a NOR gate us-
ing Verilog syntax. The Verilog-specific problem statement
typically concludes with a module declaration that specifies
input and output ports directly: ”module m2014 q4e (input
in1, input in2, output logic out);”. However, many HDLs have
distinct syntax conventions, such as struct-like or interface-
based input-output definitions, making VerilogEval’s specific
syntax problematic for non-Verilog HDLs. HDLEval circum-
vents this by focusing on purely English problem descriptions,
ensuring compatibility with a wide range of HDLs.

To facilitate seamless input-output (IO) matching, HDLEval
employs heuristics for mapping inputs and outputs across dif-
ferent languages. For example, a wrapper is used to ensure that
single-output problems have consistent naming conventions.
Furthermore, matching is done solely by name rather than
relying on order, which minimizes the risk of incompatibilities.
This flexibility allows HDLEval to maintain neutrality and test
the LLMs’ adaptability.

HDLEval also recognizes the limitations inherent in the
capabilities of different HDLs. Verilog is often referred to
as the ”assembly language” of HDLs due to its compre-
hensive feature set, but other HDLs, such as DSLX, may
lack specific features like arbitrary pipelining. DSLX uses
actor-like abstractions, which complicate the use of traditional
pipelining constructs. Hence, pipelining tests would typically
fail in DSLX due to this fundamental limitation, not because
of flaws in the LLM or HDL.

To address these challenges, HDLEval categorizes its tests
based on functional attributes like ”parameters,” ”combina-
tional,” and ”pipelining.” This ensures that only compati-
ble tests are assigned to an LLM based on the specific
HDL. Such categorization, along with input-output heuristics,
makes HDLEval a comprehensive framework for evaluating
the adaptability of LLMs to multiple HDLs. The aim is
to extend the testing suite to accommodate more complex
problems, gradually increasing test complexity and verifying
functionality through logic equivalence checking (LEC).

In summary, HDLEval provides a unique and indispensable
benchmarking framework that mitigates language bias and
increases testing adaptability, making it suitable for assessing
and improving LLMs across diverse HDLs. This focus on
language neutrality and comprehensive evaluation enables
LLMs to overcome language-specific challenges, learn from
broader patterns, and ultimately deliver reliable HDL code
generation. Further improvements could involve expanding the
benchmark suite to more complex designs while maintaining
the integrity of language-agnostic benchmarking.

B. Test Source

We derive HDLEval tests from three principal sources:
HDLBits, custom tests, and Efabless competitions.

HDLBits serves as a pedagogical platform for introducing
students to Verilog. A significant portion of our VerilogEval
tests originate from this website. We selectively incorporate
these tests, excluding those that are exclusively pertinent to
Verilog syntax. In designing tests, we ensure compatibility
across multiple hardware description languages (HDLs), in-
cluding Verilog, Chisel, pyRTL, and DSLX, by maintaining
uniform problem descriptions and interface definitions.

Custom tests, developed by our research group’s students,
address topics not encompassed by HDLBits and incorporate
more complex design elements. For instance, one custom test
requests is a 8-bit floating point addition unit.

Efabless competitions constitute another source of HDLEval
tests. We adapt published prompts into new tests, often refining
the problem through iterative question adjustments aimed
at resolving specific issues. Given HDLEval’s HDL-agnostic
nature, we remove intermediate Verilog solutions and modify
the prompts to reach an equivalent code. Though subjective,
this approach facilitates the creation of tests that push the
capabilities of current language models.

C. Test Classification

LLMs with specific HDL expertise generally handle com-
binational logic well but struggle with pipelining tests due
to their complexity. Hence, HDLEval has two categories:
Combinational (HDLEval-Comb) and Pipelining (HDLEval-
Pipe). The former comprises combinational logic tests, while
the latter includes more challenging pipelining problems, re-
flecting the real-world scenarios where data must be processed
in stages.

For example, the shift register test involves creating a
module with a synchronous reset that shifts data towards the



most significant bit, showcasing the model’s ability to handle
data movement across stages—a critical aspect of pipeline
design. Another example is the JK flip-flop, which highlights
state retention across clock cycles, an essential feature in
designing complex pipelines that depend on previous states
for decision-making processes.

Further illustrating the importance of pipelining in HDLs,
the up-down counter demonstrates how LLMs can manage
conditional operations based on multiple inputs to control a
count sequence dynamically. This test challenges the models
to understand and generate HDL code that not only counts
but also intelligently decides when and how to count based on
external controls.

The accumulator-based microcontroller example extends
this by integrating an Arithmetic Logic Unit (ALU) that per-
forms multiple operations based on opcode instructions. This
setup tests the LLM’s capability to handle various operations
and maintain state across different stages of data processing,
crucial for implementing functional pipelines in processor
design.

Each of these examples serves to evaluate how well an
LLM can understand, interpret, and generate HDLs that not
only meet the functional requirements but also adhere to the
nuanced demands of pipelined architectures.

D. Innovations and Future Directions

HDLEval represents a significant advancement in bench-
marking for HDLs by establishing a framework that supports
a variety of languages without being limited to any specific
syntax. This approach not only facilitates broader testing
capabilities but also ensures that the benchmarks are adaptable
to new HDLs as they emerge in the field.

While the current scope of HDLEval primarily covers
commonly used HDLs in educational and industrial contexts,
we acknowledge the dynamic nature of hardware description
languages and the continuous evolution of their ecosystems.
Our framework is designed to be scalable and flexible, allow-
ing for the inclusion of additional HDLs as required by future
developments in the field.

Moreover, the integration of formal verification through
logic-equivalence-checking (LEC) enhances the robustness of
our testing methodology. Although LEC is currently optimized
for less complex designs due to computational limitations,
we are actively researching ways to extend this capability to
support more intricate and larger-scale designs. This expansion
will not only deepen the testing scenarios but will also ensure
that HDLEval remains a relevant and powerful tool as both the
complexity of HDLs and the capabilities of LLMs progress.

In summary, HDLEval is poised to play a pivotal role in
the development of LLMs for HDL generation, providing a
comprehensive, adaptable, and rigorous benchmarking tool. As
we continue to refine and expand this framework, it will serve
as an invaluable resource for both researchers and practitioners
aiming to push the boundaries of automated hardware design.

E. Incorporation of Advanced Pipelining Tests

In addition to the aforementioned tests, HDLEval includes
advanced pipelining scenarios such as a vector coprocessor
with complex control logic and multiple operational stages,
which challenge the LLMs to optimize data throughput and
operational efficiency under varied computational loads. This
not only tests the syntactical generation capabilities but also
the semantic understanding of intricate hardware operations.

These pipelining tests are crucial for assessing the readi-
ness of LLMs for real-world applications where efficiency
and accuracy in sequential and parallel data processing are
paramount. By systematically increasing the complexity of
these tests, HDLEval aims to push the boundaries of what
LLMs can achieve in the domain of HDL synthesis.

In addition to English to HDL tests, HDLEval can be used
as a translation test. Each problem has an equivalent Verilog
implementation. This means asking the LLM to translate the
given Verilog to another HDL is possible. Then, since the
HDL generates its own Verilog, we can check the correctness
of the translation. Translation tests allow HDLEval to measure
different characteristics of LLMs.

F. Test Evaluation

A novelty from HDLEval is the use of logic-equivalence-
check (LEC) instead of a testbench. This is not a problem in
HDLs because all the existing HDLs allow to generate Verilog,
and existing open-source tools like Yosys [9] can perform
LEC between modules. HumanEval also has this problem.
Recent evalplus [3] shows that adding bugs to HumanEval
is not always capture by the HumanEval tests. A LEC step is
a formal equivalence that a small set of tests can not prove.

A challenge in using LEC is its requirement for convergence
to affirm the equivalence of two modules. This issue did
not happen in any VerilogEval and HDLEval combinational
designs. However, in our examination of VerilogEval tests, we
encountered an instance with pipelining where the LEC failed
to complete its analysis. This occurred in a test involving a
state machine designed to calculate population count.

For some pipeline tests, the LEC step can not prove equiv-
alence or failure, but we find that this is not a problem. The
reality is that LEC tries many combinations of values and none
fails. From a LEC point of view, there are potential values to
cover and hence it can not prove correctness. This is in-fact
more powerful tests that most HumanEval assertion tests. This
rare scenario occurss only once in 156 tests. In HDLEval, we
consider passing the test unless LEC reports a missmatch.

IV. SETUP

Table I lists all the languages used in the evaluation and the
compiler versions used by this paper. When a date is provided
it corresponds to the top-of-tree version at that given month.

Table II shows the LLMs used. The OpenAI account for
GPTs used a Tier-5 account, which is the highest throughput.
This is important to account for potential throttling.

Many LLMs, including GPT-3.5, are not deterministic. It
has produced differing outcomes for the same example under



TABLE I
LANGUAGE TOOLS AND VERSIONS

Language Tool Version

Verilog Yosys 0.35
Chisel FIRRTL 3.5
pyRTL pyRTL compiler 9/2023
DSLX XLS 10/2023

TABLE II
LLMS USED IN THE EVALUATION

LLM Version Updated Context

GPT4 gpt-4-1106-preview 4/2023 128000
GPT3 gpt-3.5-turbo-1106 9/2021 16385

identical prompt conditions. OpenAI recently proposed a new
API to address this issue, providing a seed, but this solution
still needs to be fully implemented across all LLMs. For fair
evaluation, we avoid the deterministic settings and perform 1,
5, or 10 runs depending of the pass@k parameter.

Agents [12] iterate through LLMs to improve the perfor-
mance of the LLMs. Agents leverage self-reflection, memory,
and grounding. The agent used in the evaluation resembles
AutoChip [6] and RTLFixer [7]. For self-reflection uses Chain-
of-Thought (CoT) [8], for grounding it uses error messages
like RTLFixer but uses compiler errors.

V. EVALUATION

A. HDLEval Insights

0 200 400 600 800 1000 1200
Input Tokens

0

200

400

600

800

1000

1200

Ou
tp

ut
 To

ke
ns

Ellipses Covering 80% of Data Points

VerilogEval-Human
VerilogEval-Machine
HDLEval-comb
HDLEval-pipe

Fig. 1. HDLEval has a larger set of problems than VerilogEval.

HDLEval makes two key contributions: it allows users to
use the same test across multiple HDLs and highlights the
distinct behaviors of combinational and pipelined logic. It
emphasizes the need for LLMs to address the challenges of
HDLEval-Comb and HDLEval-Pipe.

To understand HDLEval and compare it against VerilogEval,
Figure 1 compares the input and output code sizes, measured
in tokens excluding comments. The plot ellipses encompass
80% of the data points for each benchmark option. Most

VerilogEval outputs contain fewer than 200 tokens, with an av-
erage of around 130 output tokens, equating to approximately
just 14 lines of Verilog lines of code per test. In comparison,
HDLEval has an average input is comparable but the output
has 27 Verilog lines of code or nearly double. HDLEval share
many tests with VerilogEval because both HDLBits. The extra
size in input and output mostly comes from the efabless and
custom tests. This is show in the standard deviation (Std. Dev)
in Table III.

TABLE III
BENCHMARKS USED IN EVALUATION

Dataset Num. of LoC Avg Tokens

Tests Avg Std. Dev. Input Output

HDLEval-comb 138 19.1 41.6 129.8 186.6
HDLEval-pipe 53 47.6 57.6 220.9 371.5
Verilog-Human 138 14.1 7.2 172.3 102.8
Verilog-Machine 132 13.4 6.3 222.4 91.7

Table III presents several statistics for the benchmarks like
the average sizes for tokens and lines of code. The table
also shows an increased standard deviation for HDLEval
due to the efabless tests. HDLEval exhibits larger input text
specifications and output code than VerilogEval, which is
expected as HDLEval incorporates the shared HDLBits [1]
problems but also Efabless open-source competition questions.
While HDLBits are questions to learn Verilog, Efabless tests
were from chip design competitions.
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Fig. 2. HDLEval and Verilog performance across HDLs for GPT4.

Figures 2- 3 shows the HDLEval (HC and HP) can be
applied to multiple HDLs while VerilogEval even generates
significantly worse results for other HDLs because several
questions assume Verilog Syntax creating unnecessary com-
plications for the new HDL.

A comparative analysis of HDLEval-Comb and HDLEval-
pipe reveals striking performance disparities across various
HDLs, which persist across multiple LLMs. Even an advanced
LLM like GPT4 only passes more than half of the HDLEval-
Pipe tests with the aid of an in-house agent when targeting
Chisel. This discrepancy between combinational and pipeline
underscores a significant gap in current LLMs’ understanding
of pipelining, which is one of the key contributions of HDLE-
val. Figures 2- 3 illustrate that this challenge is prevalent across
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Fig. 3. HDLEval and Verilog performance across HDLs for GPT3.

all HDLs, with particularly pronounced effects in Chisel and
PyRTL.

VI. CONCLUSIONS AND FUTURE WORK

HDLEval proposes a new benchmark for HDLs that allows
to evaluate multiple hardware description languages with the
same testbench.

The benchmark is divided in two Pipelining and Combina-
tional. There are two main reasons, not all the HDLs allow
generic pipelining like Verilog, and the LLM performance is
very different between combinational and pipelining. In the
future, it would be interesting to create a set of ”elastic”
pipelining because several HDLs have this option.

Besides the new tests, HDL also proposes to use LEC
instead of unit testing to capture errors this has the potential
to avoid generating incorrect code and assume it correct.

Although not evaluated, HDLEval allows for additional tests
like translation because it includes a correct Verilog module
used for testing.

We thinkg that HDLEval is an important contribution to
the community, and we plan to release it. To avoid using it
for training, we plan to release it with a GPL license and to
encrypt it so that web crawlers do not use it as a training data
set of LLMs. The license will explicitly prohibit to release
the code un-encrypted. This avoids the problem of having to
continuously improve the tests because the LLMs have trained
with them.
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APPENDIX

HDLEval is part of a new publicly available repository and
can be accessed at https://github.com/masc-ucsc/hdeval.

To protect the integrity and intended use of the HDLEval
benchmark, several measures have been implemented to pre-
vent LLM to use the repository for training:

• License Restriction: The HDLEval uses General Public
License (GPL). This license ensures that any use of the
benchmark must comply with GPL terms, effectively
restricting its use by private LLMs for training purposes.

• Encrypted Repository: The repository is available in an
”encrypted” mode to add an extra layer of protection. The
”encryption” is a gzip with uuencode which is portable
but enough to avoid scrapping.

• Usage Restrictions: Explicit terms within the repository
forbid its use for LLM training. The benchmark is strictly
intended for evaluation purposes only.

To facilitate the evolution and extension of the HDLEval, a
standardized JSON structure and directory format have been
established.

• JSON Structure: The JSON files within the HDLEval
repository follow a consistent schema, which includes
metadata about the benchmarks, test parameters, and
expected results.

• Directory Format: The directory layout of the HDLEval
repository is organized to allow multiple benchmarks and
versions.


