
Thermal-Aware Sampling in Architectural Simulation

Ehsan K.Ardestani, Elnaz Ebrahimi, Gabriel Southern, and Jose Renau
Dept. of Computer Engineering

University of California Santa Cruz
{eka, elnaz, gsouther, renau}@soe.ucsc.edu

ABSTRACT
Thermal behavior of modern processors is a first-order design con-
straint. However, accurate estimation of thermal behavior is time
consuming, and techniques for accelerating performance simula-
tions often yield inaccurate results when directly applied to thermal
simulation, or do not reduce the thermal computation at all. This
paper is the first to propose thermal sampling techniques. It can
be integrated with existing phase-based and statistical-based archi-
tectural simulator sampling. The resulting simulator can perform
accurate performance, power, and thermal characterization at close
to 30 MIPS, on average, instead of 5 MIPS for the fastest sampling
technique without thermal-aware sampling.

Categories and Subject Descriptors
C.4 [Computer Systems Organization]: Performance of Systems—
Modeling Techniques

1. INTRODUCTION
The development of processors relies heavily on architectural

simulators which allow researchers and designers to evaluate pro-
posed ideas early in the design phase. However, these simula-
tions are orders of magnitude slower than native execution and
it is often necessary to use sampling techniques to reduce sim-
ulation time. These sampling techniques, which work well for
performance-only simulation, are often slow and/or inaccurate for
simulations that model thermal characteristics. The thermal char-
acteristics of a processor affect multiple aspects of processor and
system design, including maximum operating frequency, leakage
power, performance throttling, and cooling solutions. As a result,
without thermal simulation, it is not possible to obtain representa-
tive performance or power models.

Sampling solves the problem of slow simulation by reducing the
number of instructions that need to be simulated when evaluating a
proposed idea. Many studies have been done to evaluate how many
instructions need to be simulated in order to accurately estimate
performance. Phase-based sampling and statistical-based sampling
are the two basic methods of reducing the number of instructions
that need to be simulated while still gathering accurate performance
statistics [1–5].

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISLPED’12, July 30–August 1, 2012, Redondo Beach, CA, USA.
Copyright 2012 ACM 978-1-4503-1249-3/12/07 ...$10.00.

Martínez et al. [6] show that these sampling methods do not
work well when directly applied to thermal simulation. Coskun, et
al. [7] developed a phase-based simulation methodology to apply
sampling to performance and power computations. It provides ac-
curate temperature results, but does not perform thermal sampling,
which leaves thermal simulation as the main bottleneck. There is no
accurate thermal simulation methodology based on statistical sam-
pling. In this paper, we 1) extend sampling to the thermal domain
for both phase-based and statistical sampling, and 2) for the first
time develop an accurate statistical sampling based thermal simu-
lation (TASS: Thermal-Aware Statistical Sampling). As a result,
the thermal computation demand in the simulation is reduced by
25 times.

Time

T
e
m
p
e
ra
tu
re

Thermal sampling interval

Performance-Power Samples

Figure 1: Thermal sampling

The key contribution of this paper is the proposal and develop-
ment of practical implementations to perform thermal sampling.
The proposed methodology leverages the slow state transition in
thermal domain to address the sampling unfriendly feature of ther-
mal domain: strong dependency on the previous states. Figure 1
shows a thermal profile for a generic application. The original ther-
mal trace is shown with continuous lines. The performance and
power sampling points are shown by circles. Each performance
sample is typically thousands of instructions, while the sampling
interval is tens of thousands to millions of instructions. To gen-
erate the temperature trace, previous works reconstruct the power
trace and pass it to the thermal model. Consequently, with or with-
out performance sampling, the number of thermal computations re-
mains the same. While the previous works are oblivious to the sam-
pling at performance stage, our proposed method integrates with it.
The dashed line between each two adjacent circle in the figure is
one thermal sampling interval. One round of thermal computation
is enough in the proposed method to generate the temperature trace
for a thermal sampling interval. This benefits the simulation in two
connected ways; First, it makes it feasible to extend sampling to
thermal by simplifying the integration of performance and thermal
sampling. Second, it saves time by significantly reducing the num-
ber of thermal computations; We propose a framework to preserve
the accuracy while applying this idea.

2. BACKGROUND

i + 1
...... {

DetailRabbit Warm-up Timing

RW WD DT

sampling interval i
R W D T

i - 1

(a) Statistical Sampling

SimPoint i

...

TR

...
R

...

(b) Phase-based Sampling

Figure 2: Execution modes in sampling methods

2.1 Statistical-based Sampling
When sampling is used with performance modeling the goal is to

produce an accurate average estimate. Some structures like caches
and branch predictors require warm-up when the samples are not
long enough [4]. Figure 2a shows the sequence of execution in
statistical sampling process. Each sampling interval is composed of
4 execution modes (or 3 as some methods do not implement Rabbit
mode, all modes described in Table 1). The Timing is where the
samples are gathered.

Phase Description

Rabbit Fast-forward emulation or native co-execution
Warm-up Memory and branch traces to maintain accurate state
Detail Cycle-accurate modeling, statistics are discarded
Timing Cycle-accurate timing modeling

Table 1: Simulation execution modes.

Statistical-based sampling encompasses power sampling as well,
but is not commonly used for modeling thermal behavior. How-
ever, it has been used by Nookala, et al. for temperature-aware
floorplanning [8]. They did not evaluate the overall accuracy of
their sampling methodology, which was only used to help guide a
floorplanning optimization algorithm. Our evaluation shows that
even an enhanced Nookala methodology that considers CPI varia-
tions over time (which we call SS) does not yield accurate results
as extra thermal-aware adjustments are required for sampling pa-
rameters (See Section 3). Dynamic adaptations in the architecture
can be captured by statistical sampling at runtime.

2.2 Phase-based Sampling
When the samples are long enough, such as 100M instructions

used in SimPoint [1], it is not necessary to perform microarchi-
tectural warm-up to achieve accurate performance metrics. Hence,
phase-based methods go through 2 execution modes, Rabbit and
Timing. The samples, called SimPoints, are gathered during the
Timing mode. Figure 2b shows the modes in the sampling process.
The dotted lines in the figure indicates that the simulation points
and the fast-forwarding intervals are much longer in phase-based
sampling compared to the statistical sampling technique. Accord-
ingly, the number of samples are much less.

Coskun, et al. [7] proposed reconstructing the power trace us-
ing SimPoints [1]. This is done in two simulation steps after a
round of offline profiling. The first one gathers performance and
dynamic power for the SimPoints. The second one reuses the gen-
erated dynamic power and performance results, and reconstructs
the whole program execution. The program phases that were fast-
forwarded are approximated with the most similar SimPoint. The
second simulation step reconstructs the power trace and computes
the temperature. This technique does not deploy thermal sampling,
and requires modeling the temperature for the whole trace. We call
this method PS.

The phase-based approach of obtaining power traces integrates
very well with SimPoint when there is no need for processor adap-
tation based on temperature or power. However, whenever the pro-
cessor performs any architectural adaptation based on power or
temperature, its performance changes. Coskun, et al. [7] proposes
generating the performance and power SimPoints for each possi-
ble processor state. For example, if there are 4 DVFS levels, the
SimPoints need to be generated 4 times. The second simulation
phase picks the correct trace to build the correct runtime power and
thermal profile.

3. THERMAL-AWARE SAMPLING
The existing sampling based thermal simulations perform sam-

pling, and then reconstruct the power trace. Afterwards, a full
thermal computation is performed on the reconstructed power to
generate a detailed temperature trace. Hence, with or without per-
formance sampling, the thermal stage performs the same amount
of computations. The slower state transitions in temperature com-
pared to power and performance suggests the potential for having
fewer thermal computations. Previous works have recognized this,
and most of them average the power for 10K to 1M cycles. Then the
thermal computation is performed once for that timestep [8–10].
The timestep is set to be around an order of magnitude smaller
than the thermal time constant (TC) to provide accurate transients,
avoiding thermal computations for every cycle. Nevertheless, while
sampling methods drastically reduce the time spent on performance
simulation, the execution time for thermal simulation remains a
limiting factor to improve the simulation speed.

3.1 TASS Method
We extend sampling to the thermal stage. The main challenge is

that unlike performance sampling, temperature sampling requires
a very long warmup. In other words, temperature has a strong de-
pendency on previous state, which is at odds with the idea of sam-
pling. However, as mentioned earlier, temperature state changes
much more slowly than power and performance. This is lever-
aged to avoid excessive thermal computations. We start explaining
the methodology with the statistical sampling technique. A similar
concept is applicable to the phase-based technique which will be
discussed later.

In general, precise estimation of temperature at time T1 = t de-
pends on correct estimation of three parameters:

• temperature at time T0 = t −δ,
• power consumption for the (T0 : T1) interval, and
• the length of the interval, δ.

For sampling, δ is the length of thermal interval. With longer
δ, more distribution information will be skipped. Therefore, δ can
be adjusted for appropriate trade off between speed and accuracy.
We set the length of thermal interval equal to the performance sam-
pling intervals (T Pr = 1, explained later in this section). Note that
thermal intervals shorter than performance intervals do not provide
more accurate temperature trace. The reason is that smaller ther-
mal intervals than the sampling interval do not contain more power
distribution information. This is something that previous work has
neglected, and as a result they use a constant timestep which is in-
dependent of the performance sampling interval.

We synchronize the beginning of thermal and performance inter-
vals. The only temperature value computed for the thermal interval
is located at the end of the interval. Note that the correct estimation
of temperature at T0 itself is interdependent on the previous power
and δ values. Therefore, the main challenge is the correct estima-
tion of Power and Time for each interval. However, these values
are only available for the samples (T) rather than the whole inter-
val. We use a weighted moving average to estimate power and time
for a thermal interval, as formulated in Equation 1.

Θi =

n
∑

k=1
αk ×θi−k

n
∑

k=1
αk

,αk =
1
2k (1)

Θ and θ stand for estimated and measured value respectively.
Note that the estimated value will be used as the representative
value for a whole interval (a full RWDT sequence). The measured
value is the value gathered only during the sampling (T mode). n is
the history size, which determines how many measured samples are
used in calculation of the estimated value for the current interval.

3.1.1 Thermal-aware filtering for power
By estimating power values for the fast forwarded points in in-

tervals, the power trace is reconstructed. In our experiments, we
set n = 7 in Equation 1. We use the measured power from inter-
vals i to i− 7 to obtain an estimated power for the whole interval
i. Averaging the power values also works as a filtering mechanism
to smooth high frequency power spikes. We propose the filtering
because power spikes in the samples affect the reconstructed trace,
which can increase the error in the reconstructed temperature even
more, given that temperature effects tend to stay longer due to the
TC effect. Instead of applying a filter, we could increase the length
of each sample (i.e. simulating more instructions for each sam-
ple). However, it would be at the cost of longer simulation time,
as detailed timing simulation is slow. The simple filtering process
relaxes the demand for longer sampling length, while still provid-
ing stable estimations. As the evaluation in Section 5 shows, the
recommended performance-driven statistical-sampling parameters
(SS) yields inaccurate results due to this spike sensitivity during
reconstruction.

Ti =
i

∑
k=1

δk,δk =
Cyck

ClkFreq
,Cyck =CPIk × Inst (2)

3.1.2 Timeline Reconstruction
The length of sampling intervals are always a fixed number of in-

structions (Table 4). However, due to the time variant nature of the
CPI, the actual length of each interval in terms of cycles varies. To
estimate the length of each interval, Equation 1 is used with mea-
sured CPI values from last 7 intervals. Given the estimated CPI
for interval i, we can estimate the number of cycles (Cyc) for the
interval using Equation 2. The timeline of the execution is recon-
structed by estimating the length of each interval (δ). Eventually
the time at the end of each interval (T) is estimated as formulated
in Equation 2.

3.1.3 Sampling Parameters
SMARTS [4] specifies the length of each sample and the sam-

pling intervals based on the observed variability in the program be-
havior (IPC). We use the same methodology. In addition, the coef-
ficient of variability of the power samples can also be used to guide
the parameter selection. Our observation is that longer samples
need to be measured to provide stable temperature results. Table 4
shows the parameters.

Thermal phases are longer than performance phases [6]. This
implies using even longer thermal intervals than performance inter-
vals. We define the natural value T Pr ≥ 1 to be ratio of the thermal
to performance sampling interval. For example, T Pr = 2 means
that each thermal interval is as long as 2 performance intervals in
terms of number of instructions. We run a set of experiments with
different thermal sampling intervals, while performance sampling
intervals stay the same. The results are shown in Figure 3. The
y-axis shows the Root Mean Square Error (RMSE) of comparing

the resultant thermal traces against the shortest thermal interval of
10K. The results confirm that as long as the thermal statistics are
gathered at the end of thermal interval, where the temperature is
estimated, longer thermal sampling intervals can be tolerated. As
a results, T Pr > 1 can be used to even further accelerate the sim-
ulation speed. Practically T Pr = 3 still generates accurate results.
This means that the thermal interval is around 15M cycles, which
is longer than thermal time constant of the package we model. This
is the first time that a thermal simulation can run with a timestep
longer than TC and preserve accuracy.

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10

10K 100K 1M 10M 100M

R
M

S
E

Thermal Sampling Interval(δ)

Full Trace Comparison
Comparison at Samples

Figure 3: Accuracy of estimated temperature at thermal sam-
ples with different thermal sampling intervals

3.2 TAPS Method
As mentioned in Section 2.2, Coskun et al. [7] proposed a power

reuse method to reconstruct the power model for phase-based meth-
ods. The distance between samples in phase-based sampling is
longer and variable (each sample is typically in order of 10M to
100M instructions and the distance between samples could be bil-
lions of instructions). Martínez et al. [6] point to the validity of
reporting the metrics only at samples as long as the initial tempera-
ture for each sample is set to the correct value. So fast-forwarding
through the intermediate points and estimating the temperature for
the end of the interval between samples (i.e. beginning of next
sample) avoids multifold thermal computations, and speeds up the
simulation as a result. For fast-forwarding, a faster but less accu-
rate thermal simulation can be achieved by either performing ther-
mal simulation on a coarser grain floorplan, or with a longer time
step. We only perform the latter because this is enough to reduce
the thermal simulation time to a small percentage of the total sim-
ulation time.

4. SIMULATION SETUP
Table 2 lists the methods we evaluate in this work. SS uses the

same sampling parameters as suggested in [4]. Both PS and SS
methods perform thermal computation after reconstructing power
trace with 100K cycle timestep.

Method Description

Full Full simulation, (no sampling)
PS Phased-base sampling (Perf. + Power sampling)
TAPS PS + (Thermal sampling)
SS Statistical-based sampling (Perf. + Power sampling)
TASS Thermal-aware SS, (Thermal sampling)

Table 2: Simulation methods evaluated in this work

For performance simulation, we use a modified version of SESC
[11] that uses QEMU [12] as the functional emulator executing
SPARC instructions. The simulator offers 4 different execution
modes, explained in Table 1, to support sampling. We configure
SESC to pass activity counters to McPAT [13] (every 100K instruc-
tions max) which we use for calculating power. We use a modified
version of SESCTherm [14] to scale leakage power consumption

 0

 5

 10

 15

 20

 25

 30

Varied00 Varied06 Smooth00 Smooth06

M
a
x
T

 E
rr

o
r

(C
)

PS TAPS SS TASS

(a) Max Temperature

 0

 5

 10

 15

 20

 25

Varied00 Varied06 Smooth00 Smooth06

%
 R

e
lia

b
ili

ty
 E

rr
o
r

PS TAPS SS TASS

(b) Reliability

 0

 5

 10

 15

 20

 25

 30

Varied00 Varied06 Smooth00 Smooth06

%
 P

o
w

e
r

E
rr

o
r

PS TAPS SS TASS

(c) Power

 0

 5

 10

 15

 20

 25

Varied00 Varied06 Smooth00 Smooth06

%
 I

P
C

 E
rr

o
r

PS TAPS SS TASS

(d) IPC

Figure 4: Average, minimum, and max error of different methods. TASS outperforms the other methods. SS triggers the DTM
method, and as a result has high IPC error, in addition to inaccuracy in estimating thermal metrics.

according to temperature and device properties. We simulate two
processors: one is an Intel Nehalem-like high performance (HP)
core, and the other is an AMD Bobcat-like low power (LP) mobile
processor (Table 3). Table 4 shows the sampling and the thermal
simulation parameters respectively. For Dynamic Thermal Man-
agement (DTM), we implement thermal throttling. When the chip
temperature exceeds a threshold (363K and 348K for HP and LP
configurations respectively), the processor gates the clock to pre-
vent physical damage until the temperature drops under the defined
threshold.

Parameter Value Parameter Value

HP

Freq 3.0 GHz

LP

Freq 1.6 GHz
I$ 32KB 2w (2c hit) I$ 32KB 2w (2c hit)
D$ 32KB 8w (3c hit) D$ 32KB 2w (2c hit)
L2 1MB 16w (12c hit) L2 512KB 4w (12c hit)
Mem. 180 cyc Mem. 90 cyc
BPred. Hybrid 76Kb mem BPred. Hybrid 38Kb mem
Issue 4 Issue 2
ROB 256 ROB 56
IWin. 48 IWin. 20
Reg(I/F) 128/128 Reg(I/F) 80/64
Tech. 32 nm Tech. 32 nm

Table 3: Architectural parameters

Method Parameter

PS BBV = 1e8
TAPS MaxK = 10 [1]
SS R = 0, W = 997e4, D = 2e4, T = 1e4
TASS R = 257e4, W = 250e4, D = 2e4, T = 7e4,

History Size = 7, TPr = 2 unless mentioned otherwise

Table 4: Sampling parameters.

The benchmarks that we selected from CPU2000 and CPU2006
suites are shown in Table 5. We also use the same set of metrics pre-
sented in [6] for the evaluation, namely maximum temperature, re-
liability (aggregated EM, SM, TC, T DDB, NBT I), and power. For
power, we report the aggregation of leakage and dynamic power.

5. EVALUATION

Suite Category benchmark

CPU2000 Varied swim, gcc, mesa, facerec, lucas, bzip2
Smooth gzip, mgrid, applu, vpr, crafty, twolf

CPU2006 Varied gcc, milc, dealII, mcf
Smooth perlbench, soplex, astar, povray, namd, h264ref

Table 5: Selected Benchmarks

For each method we evaluate its accuracy, simulation speed and
the impact of thermal triggered adaptations on the overall simula-
tion speed. Thermal throttling and its impact on performance is
also evaluated. The results of LP and HP processor configurations
are averaged together, because they are statistically similar.

5.1 Accuracy
We have clustered the benchmarks in categories shown in Ta-

ble 5. The accuracy of each benchmark is calculated in comparison
with Full and average result for each category is reported. We also
report the minimum and maximum error for each category.

For SS, the spikes adversely affect the instantaneous metrics such
as maxT . TASS generates accurate maxT results which is indica-
tive of the effectiveness of thermal-aware power filtering and re-
construction. The average metrics like Power or Reliability are
less sensitive to spikes as expected. The SS results in very high
IPC error. The reason is that temperature spikes trigger the thermal
throttling DTM mechanism. Thermal throttling gates the proces-
sor clock to allow for it to cool down. This has performance im-
pact. When we disable the thermal throttling, the IPC error of SS
and TASS are similar. On average, TAPS reaches the same order
of accuracy as PS, 6.7% vs. 4.7%. Both TAPS and PS methods
could benefit from extracting shorter SimPoints, e.g., 10M instruc-
tion. However, we only run the experiments with the recommended
configuration. On average, across all the benchmarks and metrics,
TASS outperforms other evaluated methods in terms of accuracy
with 3.6% average error.

We also compute the breakdown of accuracy of the mean tem-
perature across the chip for two different Confidence Intervals (CI)
of 95% and 99.7%. The results show that even choosing a confi-
dence level of 99.7%, the average CI equals ± 0.17 for mean of
40.50 (Max CI = 1.02 for gcc06, mean 38.79). This means that

with 99.7% confidence that the result has less than 1C difference
even for the worst case application.

5.2 Simulation Speed
The sampling methods are intended to minimize slow D and T

detailed and timing simulation modes, and maximize the use of fast
W and R modes (see Table 1). The thermal-aware methods also try
to minimize the number of calls to the thermal model. The last
column in Table 6 shows the simulation speed for each method on
average across all the benchmarks. TASS has a maximum speed of
30 MIPS and an average speed of 18 MIPS, while TAPS has a max-
imum of 50 MIPS and an average of 30 MIPS. SS and PS are slower
as they do not deploy thermal sampling and fast-forwarding. Also
the spikes in SS trigger DTM, and lowers the simulation speed.
Full runs at 0.76 MIPS on average. These results are generated
with T PR = 2 (explained in Section 3) for TASS, which translates
to thermal fast-forwarding of 10M instructions. For TAPS there are
two different fast-forwarding rates as the samples are much longer
and placed farther from each other. Within the samples, the fast-
forward is set to 4M instructions, and for the intermediate points
between the samples it is set to 40M.

Method Speed w/o thermal Speed Speed
R W D T w/o thermal w/ thermal

Full - - - 1.0 1.1 0.8
PS 62 - - 1.0 38 4.1

TAPS 62 - - 1.0 38 30
SS - 49 0.4 0.3 44 2.8

TASS 20 19 0.9 1.0 22.5 18

Table 6: Breakdown of simulation speed in MIPS with and
without thermal computations

Extending sampling to thermal stage accelerates simulation speed
around 7 times, while the accuracy degrades from 4.7% to 6.7%
on average. It also affects the maximum error with the same rate.
Table 6 shows the breakdown of execution time for each simula-
tion mode, as well as the simulation speed with and without ther-
mal sampling. The execution time with thermal for thermal-aware
methods (TAPS and TASS) is an order of magnitude less compared
to their thermal-unaware counterparts (PS and SS). SS without
thermal is faster than TASS as the sampling parameter for TASS
is adjusted for thermal accuracy. The execution time at different
stages of simulation is distributed more or less evenly in the same
order with thermal time now being around 25% of total execution
time for both methods. Longer continuous instruction in each mode
provides a better opportunity for QEMU to optimize the functional
simulation and chain basic blocks.

 0

 5

 10

 15

 20

 25

 30

 35

1 4 9 16 25

S
im

u
la

ti
o
n
 S

p
e
e
d
 (

M
IP

S
)

#Dynamic States

TASS
TAPS

Figure 5: TAPS requires more simulation as processor adapts
dynamically, while TASS is insensitive to the dynamic adapta-
tions.

Our experiments show that modeling a system with the num-
ber of dynamic architectural states equal or greater than 4, TASS
achieves faster speed than TAPS. In such a case, TASS is both
faster and more accurate. Figure 5 shows the trend of speed regard-
ing the number of dynamic reconfigurations.

5.3 Full Trace Reconstruction
Thus far, we reported the results with the thermal sampling tuned

for speed (T Pr = 2), which have accurate results at thermal sam-
ples. We also tune the parameters to have a fully accurate recon-
structed thermal trace, which is important to the time−varient cat-
egory of studies, e.g. evaluation of Dynamic Thermal Manage-
ment (DTM) methods. We set T Pr = 1 for TASS to have the same
performance and thermal sampling intervals. For TAPS, we ap-
ply the same 4M fast-forwarding for all the samples. This results
in an average error of 5.7%, while the speed is 14 and 23 MIPS
for TASS and TAPS respectively. Figure 6 shows the accuracy of
each method, and Figure 7 depicts the thermal trace for four bench-
marks.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

Varied00 Varied06 Smooth00 Smooth06

R
M

S
E

TAPS

TASS

Figure 6: Average, minimum and maximum RMSE across all
benchmark categories.

5.4 Thermal Throttling Effect
In addition to thermal behavior, throttling impacts performance

as well. Table 7 shows the IPC with and without thermal throttling.
It also provides the percentage of time that the processor spends in
throttling. For TASS, the throttling time is fed back to the perfor-
mance simulator to calculate the impact on IPC. This is possible
because TASS does both performance and thermal simulation in
one pass.

Benchmark IPC Throttled IPC % Time in Throt
Full TAPS TASS Full TAPS TASS

gzip 0.99 0.99 1.01 0.99 0 0 0
swim 0.45 0.45 0.42 0.45 0.09 0.07 0.06
mgrid 0.75 0.72 0.68 0.75 4.45 7.26 5.9
applu 0.76 0.75 0.72 0.75 1.30 0.82 1.70
vpr 0.87 0.87 0.80 0.85 0 0 0

gcc00 1.29 1.12 1.71 1.21 13.1 17.7 12.4
mesa 1.50 1.35 1.17 1.40 9.87 14.8 11.9
crafty 1.51 1.34 1.21 1.40 11.3 13.8 10.0

facerec 0.72 0.72 0.72 0.69 0 0.98 3.57
lucas 0.65 0.65 0.63 0.64 0.10 0 0.12
bzip2 1.06 1.03 1.09 1.02 2.69 4.26 3.25
twolf 0.88 0.88 0.84 0.81 0 0 0

perlbench 1.29 1.20 1.16 1.20 7.32 17.1 7.57
gcc06 1.00 0.93 0.73 0.94 6.86 5.82 7.61
mcf 0.33 0.33 0.37 0.32 0 0 0
milc 0.50 0.49 0.43 0.50 2.39 4.61 3.01
namd 1.51 1.24 1.09 1.26 17.89 18.9 18.8
dealII 1.12 1.11 0.98 1.11 0.68 1.36 1.08
soplex 0.42 0.42 0.37 0.41 0 0 0
povray 1.88 1.56 1.39 1.48 16.9 21.8 18.1
h264ref 1.34 1.24 1.06 1.25 7.44 9.85 8.76

astar 0.62 0.62 0.43 0.59 0.04 0.14 0.05

Table 7: Impact of thermal throttling on performance.

6. CONCLUSION
This paper shows the necessity of applying sampling to thermal

simulation in order to increase productivity by accelerating ther-
mal simulation in architecture level. It proposes a thermal sampling
method that is applicable to both statistical and phase-based sam-
pling techniques. The evaluation shows that the newly proposed
thermal-aware sampling methods, TASS and TAPS, outperform ex-
isting thermally-unaware methods to estimate performance, power,

 315

 320

 325

 330

 335

 340

 0 1 2 3 4
T

e
m

p
e
ra

tu
re

 (
K

)

Time (sec)

Full
TAPS
TASS

(a) Swim-HP

 305

 310

 315

 320

 325

 330

 335

 340

 0 0.2 0.4 0.6 0.8 1

T
e

m
p

e
ra

tu
re

 (
K

)

Time (sec)

Full applu
TAPS applu
TASS applu

(b) Applu-HP

 308

 310

 312

 314

 316

 318

 320

 322

 0 1 2 3 4 5 6 7 8 9 10

T
e

m
p

e
ra

tu
re

 (
K

)

Time (sec)

dealII Full
dealII TAPS
dealII TASS

(c) DealII-LP

 305

 310

 315

 320

 325

 330

 335

 340

 0 0.2 0.4 0.6 0.8 1

T
e

m
p

e
ra

tu
re

 (
K

)

Time (sec)

Full mgrid
TAPS mgrid
TASS mgrid

(d) Mgrid-HP

Figure 7: TAPS reuses similar simpoints for the intervals with no sample, and does not follow the trend as tightly as TASS.

and thermal characteristics, achieving a simulation speeds of 18 and
30 MIPS respectively on average. Without thermal-aware sampling
simulation speed is less than 5 MIPS. With thermal-aware sampling
the thermal simulation overhead is reduced by 25 times. TASS also
has advantages in addition to fast simulations. First, it is more ac-
curate than PS, SS, and TAPS. Second, the simulation speed is
independent of the number of dynamic states of system (e.g num-
ber of DVFS states). We plan to make our simulation infrastructure
available for other researchers to use.

7. ACKNOWLEDGMENT
This work was supported in part by the National Science Founda-

tion under grant 1059442; Any opinions, findings, and conclusions
or recommendations expressed herein are those of the authors and
do not necessarily reflect the views of the NSF.

8. REFERENCES
[1] T. Sherwood, E. Perelman, G. Hamerly, and B. Calder,

“Automatically characterizing large scale program behavior,”
in Proceedings of the 10th international conference on
Architectural Support for Programming Languages and
Operating Systems (ASPLOS), Oct. 2002, pp. 45–57.

[2] W. Liu and M. Huang, “EXPERT: Expedited Simulation
Exploiting Program BehaviorRepetition,” in International
Conference on Supercomputing, St. Malo, France, Jun–Jul
2004, pp. 126–135.

[3] D.G. Perez, H. Berry, and O. Temam, “Budgeted region
sampling (beers): do not separate sampling from warm-up,
and then spend wisely your simulation budget,” in Signal
Processing and Information Technology, 2005. Proceedings
of the Fifth IEEE International Symposium on, Dec 2005, pp.
1 –6.

[4] R. E. Wunderlich, T. F. Wenisch, B. Falsafi, and J. C. Hoe,
“Smarts: accelerating microarchitecture simulation via
rigorous statistical sampling,” in Proc. 30th Annual Int
Computer Architecture Symp, 2003, pp. 84–95.

[5] Z. Yu, H. Jin, J. Chen, and L.K. John, “Tss: Applying
two-stage sampling in micro-architecture simulations,” in
International Symposium on Modeling, Analysis Simulation
of Computer and Telecommunication Systems (MASCOTS),
Sep 2009, pp. 1 –9.

[6] F. J. M.-Martinez, E. K.Ardestani, and J. Renau,
“Characterizing processor thermal behavior,” in Proceedings

of the 15th international conference on Architectural Support
for Programming Languages and Operating Systems
(ASPLOS), 2010, pp. 193–204.

[7] A.K. Coskun, R. Strong, D. Tullsen, and T. Rosing,
“Evaluating the impact of job scheduling and power
management on processor lifetime for chip multiprocessors,”
in Proceeding of the 11th International joint Conference on
Measurement and Modeling of Computer Systems
(SIGMETRICS), Jun. 2009, pp. 169–180.

[8] V. Nookala, D.J. Lilja, and S.S. Sapatnekar,
“Temperature-aware floorplanning of microarchitecture
blocks with ipc-power dependence modeling and transient
analysis,” in Proceedings of the 2006 International
Symposium on Low Power Electronics and Design
(ISLPED), Oct 2006, pp. 298–303.

[9] D. Brooks, V. Tiwari, and M. Martonosi, “Wattch: A
Framework for Architectural-Level Power Analysis and
Optimizations,” in Proceedings of the Annual International
Symposium on Computer Architecture (ISCA), June 2000,
pp. 83–94.

[10] K. Skadron, M. R. Stan, W. Huang, S. Velusamy,
K. Sankaranarayanan, and D. Tarjan, “Temperature-Aware
Microarchitecture,” in Proceedings of the 30th Annual
International Symposium on Computer Architecture (ISCA),
Jun 2003, pp. 2–13.

[11] J. Renau, F. Basilio, J. Tuck, W. Liu, M. Prvulovic, L. Ceze,
S. Sarangi, P. Sack, K. Strauss, and P. Montesinos, “SESC
simulator,” January 2005, http://sesc.sourceforge.net.

[12] F. Bellard, “Qemu, a fast and portable dynamic translator,” in
Proceedings of the annual conference on USENIX Annual
Technical Conference, Berkeley, CA, USA, 2005, ATEC ’05,
pp. 41–41, USENIX Association.

[13] S. Li, A. Jung Ho, R. D. Strong, J. B. Brockman, D. M.
Tullsen, and N. P. Jouppi, “McPAT: An Integrated Power,
Area, and Timing Modeling Framework for Multicore and
Manycore Architectures,” in Proceedings of the Annual
IEEE/ACM International Symposium on Microarchitecture
(MICRO), 2009, pp. 469–480.

[14] J. N.-Battilana and J. Renau, “Soi, interconnect, package,
and mainboard thermal characterization,” in Proceedings of
the 14th ACM/IEEE international symposium on Low power
electronics and design (ISLPED), 2009, pp. 327–330.

