A Design Time Simulator for Computer Architects

Sangeetha Sudhakrishnan, Francisco-Javier Mesa-Martinez, and Jose Renau

Dept. of Computer Engineering, University of California Santa Cruz

Email: sangeetha, javi, renau @soe.ucsc.edu

Abstract—Processor design and implementation is a complex and re-
source intensive enterprise. Ideally, designers should be able to quantify
the design time implications of their architectural proposals, in order to
make more educated decisions and design trade offs. To address the lack
of quantitative methodologies to estimate processor design time, this paper
introduces a new class of event-driven simulation: yDSim.

Our proposed simulation infrastructure models the interaction between
engineers during the development and verification cycles. To validate
uDSim, we compare estimated design times against data gathered dur-
ing the development and verification of three different academic processors
and three industrial multiprocessor systems. As an example application for
the architectural community, we estimate the design time for a previously
published architectural proposal.

I. INTRODUCTION

The design of a modern processor is a extremely resource in-
tensive endeavor. Yet there has been little work [1] done to mea-
sure, understand, and estimate the effort associated with pro-
cessor design. Different competing designs may not only vary
in their power and performance characteristics, but they may
also differ in their design times. Since alternative changes in a
given architectural element may impact the project differently,
designers as well as managers should be able to estimate their
design times. Making architectural decisions without quantita-
tively considering their impact on the design time can lead to
designs which are too complex. Such lack of insight may lead
to missed processor design deadlines, a major cause for the in-
crease in costs, and sometimes even to the cancellation of design
projects, like the Sun Millenium [2].

This paper proposes a simulation infrastructure (4 DSim) that
predicts the design time required for a given processor descrip-
tion. Such simulation infrastructure needs to solve three main
problems: How to create a generic model of the engineers (En-
gineer Model); How to specify a processor before it is imple-
mented (Processor Description); How to model the design flow
commonly found in processor design teams (Design Flow).

To obtain the expected design time, 4DSim models several
pseudo-random possible design time lines. Similar to architec-
tural simulators, it does so by advancing through all the develop-
ment phases in small quanta of time. The Engineer Model gen-
erates pseudo-random events (communication) as the time ad-
vances based on the processor specification. uDSim performs
several simulations to capture the multiple random factors at
play when modeling design processes. This has the advantage
of providing a distribution of design times, with the more un-
predictable designs having wider distributions.

UDSim leverages metrics and studies from software engi-
neering, with significant differences that are specific to proces-
sor designs. uDSim uses an simulation model instead of an ana-
Iytical model. Several studies [1, 3, 4] propose relatively simple
equations to estimate design effort. There are two key prob-
lems with such systems that uDSim addresses: (1) per team
parameters; (2) methods to estimate lines of code (LoC). The
per team parameters imply that to estimate the design time for

1-xxxx-xxxx-4/10/$25.00 (©2010 IEEE

Processor
Description

Predicted
Design Time
Distribution

Engineer
Model

Fig. 1: uDSim infrastructure.

figure

a given project, a per team parameter needs to be found [1].
This complicates the whole process because some parameters
are not known until the project is finished, thus methods to es-
timate these parameters in advance are required. Requiring the
lines of code (LoC) is equally challenging, software engineer-
ing models [3, 4] dedicate most of their efforts on how to esti-
mate them. The use of cyclomatic complexity, for our processor
model, greatly simplifies these issues due to its composability
and because it is easily estimated by architects.

The resulting uDSim simulation infrastructure makes it pos-
sible, for the research community, to compare the relative com-
plexities of different processor components. uDSim enables
designers to quantitatively evaluate the design times for their
proposals. As the evaluation shows, uDSim achieves a 0.98
correlation predicting design times, which is a clear improve-
ment over previous analytical work [1].

uDSim can be used to estimate not only the overall time to
complete an entire processor, but also the time required to im-
plement alternative architectural proposals. As an example of
usage, the evaluation section shows that SEED [5], a processor
issue logic mechanism with significant improvements in perfor-
mance, power, and area, displays also a significant impact on
design time. uDSim reports that an Alpha-like processor with
a SEED scheduler has a 10% design time increase when com-
pared against the same Alpha-like processor with a traditional
scheduler. In a way, this 10% design time increase is equiva-
lent to a net slowdown of 8% due to being later to market if we
assume that processors double performance every 2 years.

II. uDSIM SIMULATOR

uDSim is a simulator that evaluates the impact, in design
time, of specific architectural proposals. Its modus operandi is
similar to most event-driven architectural simulators. Instead of
dealing with events such as memory access or processor clock
cycle advances, £DSim deals with events that model communi-
cation between engineers, their productivity, and estimates the
design time for a given engineering organization based on a high
level description of the design to be evaluated.

The simulation infrastructure allows to easily modify the de-

11th Int’] Symposium on Quality Electronic Design

sign specification for the processor being evaluated. The num-
ber of engineers and design teams are fully configurable. Thus
allowing architects to simulate the design and implementation
characteristics of their proposals under different design team
configurations. Figure 1 shows the uDSim simulator with its
three major components: engineer model (Section A), proces-
sor description (Section B), and design flow (Section C). Each
of the major components of the simulator are defined in the sec-
tions that follow.

Predicting the exact finishing time/date for a project is a chal-
lenging task. This is due to the fact that design processes in-
volve many factors which are very difficult to estimate accu-
rately, such as productivity differentials between engineers and
their communication. To account for this uncertainty, uDSim
performs many simulations for a given project, with several
engineer parameters using Gaussian distributions with defined
mean and standard deviations. By performing multiple simula-
tions, the output of uDSim is not a discrete value, but a distri-
bution for the estimated design time. Intuitively, projects with a
smaller standard deviation are more predictable.

II.A. Engineer Model

Humans, and therefore engineers, seem difficult to model be-
cause of unpredictable random events (illness, world events, lost
of data...) and the large amount of parameters that can affect
their productivity. After all, there are many books just to ad-
dress parameters like cubicle size, team organization, and tool
productivity. These issues seem to imply that uDSim needs
to consider a very large set of parameters to accurately predict
the design time. To deal with the possible complexity, our ap-
proach uses the minimum set of parameters possible to achieve
a good correlation with the observed data for the real processor
projects in our study, while still capturing well known software
engineering principles properly.

TABLE I: uDSim engineer parameters. Sync, Async, and Comm stand
for synchronous, asynchronous, and communication respectively.

table

| Name | Source [Value |
. Mean | Fitted | 0.2 Somatc
our
Skill Level Std. Dev. | [6] | S times
. . [71 x2.2
Skill Learning in 15 months
. Mean [6] 7 engineers
Team Size. Std. Dev. [6] 3 engineers
minutes
Sync. Comm. Mean [8] 104 _day
Std. Dev. [8] 95 minutes
minutes
Async. Comm. Mean [8] 35 day
Std. Dev. [8] 53 minutes

Table I shows all the engineer parameters used by uDSim.
This table only has five different parameters, some of them fol-
low a Gaussian distribution (Mean, Std. Dev.). Four of these
parameters are obtained from previous publications. Only one
parameter (mean Skill Level) is tuned using a subset of the pro-
cessors available as a training set. As the evaluation shows, we
have 6 processors available with multiple breakdowns in design
time. In total, we have 20 different design components with

their respective design times and team sizes. We use 3 proces-
sors (10 components) to tune just the mean skill level.
Skill Level and Learning

Initial studies in software engineering conclude that not all
engineers are equal [9]. The differential in skill levels across
engineers in a single project can be as high as 1 order of mag-
nitude. In our simulation infrastructure, the skill levels of en-
gineers have a Gaussian distribution (mean Skill u, std. dev.
Skill o). The average skill is obtained by performing a regres-
sion over the training set. Furthermore, the standard deviation is
based on the observation that it is common to find up to 5 times
difference in productivity [6].

Technical skills do not stay constant with time either [7], the
longer engineers work in a specific project (Proficiency Time)
the higher their productivity. Previous work observed produc-
tivity increases of up to 120% in 15 months [7]. uDSim intro-
duces a skill learning curve which applies the following correc-
tion:

SSL = Starting Skill Level

Skill = {

Team Size

The design team in this study is represented as a balanced
tree of manager and engineers. Each parent node represents a
manager, which has a set of leaves representing the engineers or
sub-managers under its command. Each manager is assumed to
have a Gaussian distribution with a mean of 7 engineers under
its command, and a standard deviation of 3 engineers. These
parameters have been approximated from previous studies [6].

time > 15 months
otherwise

2.2 xSSL
(1+1.2 x

Time
15 months

) X SSL

Communication

Communication and interaction between engineers are fun-
damental aspects in any design environment. Overall efficiency
decreases as the number of engineers in a single project in-
creases [6,9, 10]. This is due mostly to the communication
overhead associated with the size of a design team. When an
engineer works in a project he/she needs to know the project de-
scription, learn the development environment, familiarize with
the design methodology, and many other factors. Communi-
cation does not only decrease the engineer’s time available to
work on the project but also affects (reduces) the efficiency of
the person at the other end of the conversation.

There are two kinds of communication considered in our
model: Synchronous and Asynchronous. Synchronous com-
munications are interactions between the team members. This
includes meetings and other events where there is a face to face
communication. Asynchronous communications mostly corre-
sponds to emails, documentation, collaboration through reposi-
tories, etc.

uDSim randomly generates synchronous and asynchronous
events as each engineer advances his/her design. While asyn-
chronous communication does not interrupt other workers while
busy, synchronous communication does. £DSim uses the com-
munication parameters and values shown in [8]. Different com-
panies may have different communication patterns, in this work
however, we assume that all the projects use the same commu-
nication parameters.

A DESIGN TIME SIMULATOR FOR COMPUTER ARCHITECTS

I1.B. Processor Description

In order to estimate design time, we must define what ele-
ments are needed to provide a complete description for a pro-
cessor. Processors have many components or units that inter-
act with each other. For example, the load/store queue inter-
acts directly with the data cache, but not with the instruction
cache. The components existing in a processor (or multiproces-
sor) can be seen as a graph where each node provides some basic
functionality, and the edges are the interactions between com-
ponents. While the edges represent interactions between units,
the nodes represent the units. Each node is labeled with a com-
plexity metric. The higher the value the harder it is to design
the unit. Nodes are undivisible, this means that a single person
should work on it. Typically, a manager or architect extracts a
set of connected nodes and assigns them to an engineer.

The rest of this section describes how to estimate the overall
complexity for each node (Component Complexity Estimation),
how processor designs can be partitioned into several nodes
(Component Selection), and the partitioning algorithm used by
the simulated managers to assign tasks to engineers (Design
Partition).

Component Complexity Estimation

[1] demonstrates that Lines of Code (LoC) is better esti-
mating processor complexity than synthesis metrics. However,
LoC are difficult to estimate. The Cyclomatic complexity, also
known as the McCabe number [11], is an alternative software
metric to estimate design complexity. Assuming a program can
be represented as a control flow graph, the Cyclomatic com-
plexity for a program is defined as the number of edges minus
the number of nodes plus one. More intuitively, the Cyclomatic
complexity is equivalent to the number of linearly independent
paths which exist in a given program. Which are, incidentally,
exactly the same as the minimum number of tests required to
provide a full testbench coverage.

Intuitively, Cyclomatic complexity captures the connectivity
displayed by the control flow graph. Although Cyclomatic com-
plexity was originally developed for software projects, it is also
applicable to processor designs using collections of Hardware
Description Language (HDL) statements. In theory, the number
of statements in a program and the Cyclomatic complexity can
be very different, but previous work [12] has shown that Cyclo-
matic complexity and the lines of code are highly correlated for
HDL programs. Since lines of code and number of statements
are two of the best metrics to estimate design effort [1] on mi-
croprocessors, Cyclomatic complexity is a good alternative met-
ric. The evaluation section in this paper performs simulations to
verify the previous assumption.

Cyclomatic complexity also has the advantage that it is easy
to estimate by computer architects. Intuitively, if we have a
stateless component with four different types of responses for
the given inputs, its Cyclomatic complexity is four. For exam-
ple, the Cyclomatic complexity for a simple Arithmetic Logic
Unit (ALU) is equal to the number of operations implemented.
For a more complex block like a Power4-like [13] Store Reorder
Queue (SRQ), we enumerate the linearly independent behaviors
that the SRQ has. If we ignore the multiprocessor reply/flush
triggers, the Load Reorder Queue (LRQ), and Store Data Queue
(SDQ) updates, the SRQ has the following situations or behav-
iors to be implemented and verified: reset management, stores

allocate an SRQ entry reservation at rename, store address up-
date at execution, store completion at retirement, find the correct
SRQ for store-load forwarding, perform word, half-word, byte
load or no forwarding at load execution, flush triggered when
only partial load forwarding is available, load replay triggered
when the address is in the SRQ but still not in the SDQ, and
SRQ full signal management. Since there are 12 linearly in-
dependent cases, we have a 12 Cyclomatic complexity for the
Power4-like SRQ unit.

Component Selection

Given any processor structure, we can create further recur-
sive decompositions until the basic cell operations are reached.
Another key advantage of Cyclomatic complexity is that it is a
composable metric. This means that if we have a unit with a
given Cyclomatic complexity (A), we can divide it in two units
(B and C) where the Cyclo(A) = Cyclo(B)+ Cyclo(C).

Once a manager is able to create enough tasks to keep all
the engineers busy, there is no reason to subdivide components
any further !. For example, the evaluation shows that clustering
graph nodes has little effect on the overall design time as long as
the number of engineers is significantly bigger than the number
of components. To avoid significant unbalances in the graphs,
we try to minimize the difference in Cyclomatic complexity be-
tween graph nodes.

It is necessary to partition the processor into multiple high-
level components. The number of components (#C) should
be an order of magnitude larger than the number of engineers
(#E). To estimate the Cyclomatic complexity for each compo-
nent (C;), it is necessary to estimate the minimum number of lin-
early independent behaviors. If the Cyclomatic complexity for
any component ((;) is an order of magnitude bigger than the av-
erage complexity (AveC), then we further divide that component
and recalculate the complexity for the sub-components. For
large projects, the AveC can be fairly large. Nevertheless, the
same software engineering recomendations about Cyclomatic
complexity hold for a processor HDL codebase. The original
recomended Cyclomatic complexity limit is 10, some other re-
searchers suggested higher limits, however blocks with over 30
Cyclomatic complexity are considered very difficult to verify or
to correctly estimate their Cyclomatic complexity. This is why
we recommend to further partition a block if its C; is over 30.
Design Partition

As stated previously, a project can be represented by a graph
where each node has a defined Cyclomatic complexity. The
goal of the project manager becomes assigning tasks to engi-
neers so that all the engineers can be busy, thus maximizing their
productivity. To avoid communication overheads, the manager
partitions the project graph in several sub-graphs and assigns
components to engineers based on their skills. Based on [1],
we know that for single-engineer projects, there is a linear de-
pendence between project size and time to complete the task.
Therefore, the manager may use graph partitioning techniques
to minimize communication between tasks and approximate the
completion time based on the Cyclomatic complexity for that
component.

The graph partition algorithm utilized is very similar to VLSI

! Leaving very complex single nodes may lead to incorrect Cyclomatic esti-
mation because it is easier to miss some different behavior. The level typically
used by architects is appropiate because it needs to explain the complete behav-
ior or operation of each unit.

floorplaning algorithms. pDSim uses Metis [14] which per-
forms simulated annealing to partition the graph in a balanced
way while minimizing edges between partitions. The manager
partitions the design based on the number of engineers working
on the project.

II.C. Design Flow

The scope for the design flow considered by the simulation
infrastructure in this paper is limited to a timeline inspired by
software engineering projects, which are commonly divided in
4 phases: drafting of requirements, design description, imple-
mentation coding, and testing.

Typical software engineering projects break their timelines
into 20% dedicated to requirements, 20% design, 20% coding,
and 40% for testing. This breakdown is obtained after multiple
studies which have shown that, contrary to common assump-
tions, testing tends to require double the time than coding. This
is true for both logic designs [15] and software engineering [9].
uDSim requires a description of the project. Therefore, the
component indicating the requirements phase is not included
for consideration. As a result, the actual timeline modeled is;
design, coding, and testing.

If we ignore the communication overheads included on the
engineering team model, and assume that there is a single de-
signer, the three phases of the design flow (design, coding, test-
ing) are highly correlated with Cyclomatic complexity. Further-
more, as stated above, Cyclomatic complexity is equivalent to
the number of different paths present in the program. This is
exactly the same as the minimum number of testbenches re-
quired to have a 100% coverage. Thus, the information re-
lated by the Cyclomatic complexity or the minimum number
of tests required is highly correlated with the time required to
test a module.

Previous work shows that the number of statements [1] is
a good metric to estimate design effort for several processors.
However, that study does not consider Cyclomatic complexity
as a possible metric. The evaluation section shows that Cy-
clomatic complexity is as correlated with design effort as the
number of statements, by analyzing the same processor designs
in [1]. As aresult, we use Cyclomatic complexity as an approx-
imation to design effort if overheads are ignored.

The last major component of the design flow is the actual
design phase. Intuition suggests that Cyclomatic complexity
should be correlated with the design time for HDLs, however
we do not have empirical data to backup this claim. Never-
theless, since there are previous studies [9] which show a spe-
cific percentage breakdown between design and coding/testing,
a correct estimation for testing can be used to also extrapolate
design time. Both testing and coding are highly correlated with
Cyclomatic complexity. Therefore it seems safe to assume that
design time is also highly correlated with Cyclomatic complex-
ity.

Figure 2 shows an example of a generic design flow. The
manager partitions the design in several sub-tasks. Since we fol-
low an Agile development process, the manager tries to extract
tasks that require 1 month work of design/coding. As new tasks
are created (A,B,C,D) any free engineer in the project group
can be assigned by the manager to work on the new task. As
the tasks complete, depending on the skill level of the engineer
he/she may or may not select a new task.

Manager FA4=B4=C=D+

Engineer 1 = design A === coding A = design D = codingD =e = = =
Engineer 2 |- design B sejemmm cOdING B mmmme] teSting A me = = o
Engineer 3 = design C = coding C [,

Fig. 2: Sample design flow Gantt chart for 3 engineers.

figure

The infrastructure is flexible enough that multiple design
flows may be defined and simulated. For example, compa-
nies like Intel utilize two competing teams working on the same
project in order to reduce variability. £ DSim can be extended to
model such design flows. In this paper, we just focus on devel-
oping the simplest possible infrastructure that can be success-
fully validated using the data obtained for several real processor
projects.

III. EVALUATION

The evaluation for uDSim is divided in five parts. We start by
showing the simulation results for two processors (Section A).
We then analyze the overall accuracy for the time estimates pro-
vided by uDSim, by comparing these estimates against the real
design times for several processors (Section B). We conclude by
showing an example application for our simulation framework,
where the design time estimation is added to the evaluation of
the design of an out-of-order issue logic (Section E).

IIILA. uDSim Simulation Results

Each uDSim simulation result reports a possible design time.
Randomized factors like different productiveness between en-
gineers, different work distributions, and communication times
imply that a single #DSim simulation is not enough to estimate
the expected design time. To obtain a representative design time
distribution, we perform 200 simulations for each project in this
paper. Although uDSim is implemented in Ruby, it requires
less than 20 minutes to do all the Monte-Carlo simulations for
any evaluated processor.

Figure 3 shows the uDSim simulation histogram when mod-
eling the design time for the Illinois Verilog Model [16] (IVM)
with a single engineer. The x-axis shows the design time in
days, it is divided in 5 quantiles (0Q, 1Q, 2Q, 3Q, and 4Q). The
graph also includes two additional vertical lines for the mean
and the reported design time for IVM (460 days). Similarly,
Figure 4 shows the uDSim histogram for the Sun OpenSPARC
processor (1st version of Sun Niagara). For the OpenSPARC,
the design time reported by Sun is 440 days with approximately
32 engineers working.

Neither of the plots shows a Gaussian or normal distribution.
While the IVM looks like a log-normal distribution with a pos-
itive skew, the OpenSPARC has a bimodal distribution. Differ-
ent problem partitioning and communication overheads create
different distributions.

Since each simulation can have a different distribution, we
can not use standard deviation or confidence intervals. Instead,
we report the median design time 2, and the 1st and 3rd quantile.
For IVM, the median is 536 days, the 1st quantile starts at 473
days and the 3rd quantile finishes at 620 days. We summarize
this information as a ternary (473, 536, 620) which we refer

2 The median corresponds to the 2nd quantile.

A DESIGN TIME SIMULATOR FOR COMPUTER ARCHITECTS

Measured

0Q 1Q . 3Q 4Q
< median
3 m
S ‘
(3]
o
S
S
2
2
g g
5
S
3
S
g Vm = . N
° T T T T T T 1
400 600 800 1000 1200 1400 1600

Design Time

Fig. 3: IVM design time histograms reported by uDSim.
figure

Meagured
0Q 1Q) 3Q 4Q
median -
o |
N
8
o
w
5
o
> — —
2
g g
o T L
o
— = — - e
o |
<3 '
S !
s [W
8
o
=
° T T T T T T 1
380 400 420 440 460 480 500

Design Time

Fig. 4: Sun OpenSPARC design time histograms reported by uDSim.
figure

to as a uDSim prediction. For IVM, it means that 50% of the
uDSim simulations finished between 473 and 620 days, with a
median of 536 days. In contrast, for OpenSPARC we have a
(400, 454, 478) uDSim prediction.

II1.B. Overall Time Estimation

To evaluate the accuracy of the estimates provided
by uDSim, we gather the design times for multiple real-world
commercial and academic processor designs. In all the cases
we asked the designers for the design times including de-
sign and verification. Whenever possible, the designers pro-
vided a breakdown by components. The design data gathered

from academic processors includes two out-of-order processors
(PUMA, IVM), and one vector-thread processor (SCALE). We
also report design times for three Sun Microsystems processors:
OpenSPARC, Niagara and Victoria Falls.

PUMA is a taped-out two-issue superscalar processor which
implements a subset of the PowerPC integer instruction set
(ISA). PUMA is part of a study by the University of Michi-
gan on high-performance processors implemented in radiation-
hardened GaAs processes. The Illinois Verilog Model (IVM)
implements a subset of the Alpha 21264 architecture. The cache
hierarchy is not modeled. IVM is part of a research project in
fault-tolerance at the University of Illinois. Both projects are
fully synthesizable using the Verilog HDL. SCALE [17] is a
low-power, high performance embedded processor, designed at
the Massachusetts Institute of Technology. The processor fol-
lows a vector-thread architectural paradigm and has been taped-
out.

The OpenSPARC processor is based on the published Verilog
implementation for the Niagara 1 (T1) released by Sun. Niagara
2 (T2) is a multithreaded, multicore CPU. Victoria Falls (T2
Plus) is based mostly on the Niagara 2 processor, and extends
it to provide multi-chip coherence. Sun has provided us the de-
sign times and the number of engineers in the front-end design
and verification teams. OpenSPARC required 2 years approxi-
mately with 32 engineers, the Niagara 2 required over 3 years
with 40 engineers. Finally, the Victoria Falls project required a
year and the same number of engineers.

The inclusion of such varied processor designs in our study,
helps in validating the utility of uDSim for both industry and
academia. All the designs considered are implemented in Ver-
ilog. The number of statements and the Cyclomatic complex-
ity for each Verilog file is extracted automatically via a custom
parsing tool. The tool also builds the component graph extracted
for each Verilog file.

Table II shows the main results. Each row represents either
a processor block, or the whole processor design itself. Each
component in the table for which the design times are known
is marked with a *. The values for design time and number of
engineers are obtained from the designers. Design time reflects
the total “wall clock” time it took to complete each design. All
uDSim simulations use exactly the same design flow and engi-
neer model parameters, only the number of engineers and the
processor description vary across simulations for the different
processors.

The 2nd column of Table II shows the number of engineers
used while computing the mean design time of a component.
The 3rd column (Measured Design Time) is the measured time
in days 3 that it takes to implement each discrete processor com-
ponent, as obtained from [1]. The 4th column shows the pre-
dicted median times to complete the design as explained above,
the 5th column shows the minimum time for each design, the
6th and 7th columns show the first and third quantiles respec-
tively, finally the 8th column shows the maximum design time.

In order to validate uDSim, we report the correlation factor
(7) between the estimated and the reported design times for each
component. Correlation provides a standard method to quan-
tify the relationship between two sets of values. Cohen [18]

3 The evaluation assumes a 8 hour work day, 40 hour week, 160 hour month,
and 2000 hour year which assumes no holidays.

TABLE II: Design time estimation for different processors and team sizes. # Eng. stands for number of engineers.

table
Module #Eng. Measured Predicted Min First Third Max
’ ‘ ‘ ‘ ‘ Design Time ‘ ‘ Median Time Quantile ‘ Quantile ‘
TPUMA-Fetch* 1 60 44 28 39 52 93
4PUMA-Decode* 2 80 113 25 102 127 183
4“PUMA-ROB* 1 80 130 81 114 156 237
4PUMA-Core* 4 240 206 93 188 227 321
4PUMA-Memory* 1 20 29 19 26 34 62
PUMA 1 N/A 558 380 500 631 1202
PUMA 2 N/A 393 192 360 441 621
4PUMA* 4 240 236 126 174 258 375
IVM-Fetch* 1 121 110 75 98 131 259
IVM-Decode* 1 24 31 19 27 35 111
IVM-Rename* 1 48 75 51 65 86 214
IVM-Issue* 1 48 77 51 69 91 196
IVM-Execute* 1 36 76 48 65 89 238
IVM-Memory* 1 122 237 152 211 273 791
IVM-Retire* 1 61 85 56 73 102 217
IVM * 1 460 536 365 473 620 1630
VM 2 N/A 384 201 356 423 549
VM 4 N/A 249 111 226 270 417
OpenSPARC 4 N/A 791 383 733 851 1136
+OpenSPARC* 32 440 454 375 400 478 536
#SCALE-Cache* 1 180 195 121 174 222 529
4SCALE-Core* 1 380 464 310 412 557 1222
SCALE 1 N/A 546 410 704 611 1502
4SCALE * 2 380 424 148 392 476 805
SCALE 4 N/A 259 107 237 284 637
Victoria Falls 26 N/A 396 379 392 401 484
Victoria Falls* 40 360 399 377 393 411 456
Niagara 2* 40 720 693 662 682 703 978
Niagara 2 99 N/A 678 648 672 686 734
[[_Correlation (1) [NA T 1 1] 0981 [021 | 0.982 | 096 [0.69 |

classifies correlation values in the following ranges: 1 perfect,
1 > r > 0.9 nearly perfect, and 0.9 > r > 0.7 very large. In
Table II all the components that were used to calculate the cor-
relation are marked with a *.

We use a subset of the processors (PUMA, SCALE, and
OpenSPARC) to tune the skill level uDSim parameter, with
10 components overall. The subset of processors used in the
training set in marked with % in table II. These processors are
in the training set because they are very diverse; while PUMA
and SCALE are small academic processors, SCALE is 1.2 times
more complex in terms of Cyclomatic complexity than PUMA
and requires 7 months longer to fully implement with 2 extra
engineers.

On the other hand OpenSPARC, an industrial processor, has
four times greater Cyclomatic complexity than PUMA and three
times greater Cyclomatic complexity than SCALE. The corre-
lation when only the training set is used is 0.98. When uDSim
applies the skill level learned from the training set (PUMA,
SCALE, OpenSPARC) to the testing set (IVM, Niagara 2, Vic-
toria Falls) the correlation remains at 0.98. This indicates that
the quality of the estimate is very good.

For this study, uDSim obtains an average correlation value
of 0.98, which is very large. For comparison purposes, the
design time predicted by [1] for their DEE1 metric is 0.86.
DEEI assumes complete knowledge of the design and requires
productivity adjustments for each project. In contrast, uDSim
only requires a single parameter to be tuned (skill), since all
the other parameters are obtained directly from previously pub-
lished studies. As a result, we feel that uDSim is a signifi-

4 The subset of processors used in the training set is marked with a # in table
IL

cant improvement towards developing reliable quantitative ap-
proaches for the estimation of design time.

1II.C. Model Justification

The previous section compares uDSim with specific proces-
sor design times, we now proceed to target commonly accepted
software engineering models for comparison. Modern proces-
sors designs rely on HDL languages like Verilog and VHDL.
Therefore, trends found in software engineering (SE) projects
should hold true with uDSim. This section focuses on the anal-
ysis of our simulation infrastructure with respect to three SE
trends: Project size impact, design team impact, and the Brook’s
Law [6]. uDSim does not directly encode any of these three
trends. To our knowledge, this is the first time that they are
validated against a simulation infrastructure.

Project Size Impact

Project size has a super-linear relationship with design time.
Even for projects involving a single engineer, doubling the
project size more than doubles the design time. Thus, as the
size of a project increases, productivity decreases.

Analytical software models like COCOMO [3] and FPA [4]
capture this observation. COCOMO approximates design effort
with a Size?, where a is a project based constant and b is an
exponent bigger than one. The more challenging the project
the bigger the exponent. COCOMO suggest the use of a 1.05
exponent for simple “organic” projects, and 1.2 for “embedded”
projects. We can not find approximate values for HDL projects,
so we assume that HDL projects are as complex as the most
complex embedded projects.

Figure 5 plots the design time for different project sizes. The
data in this figure reflects a single engineer working on mul-
tiple projects of varying size. To capture the design time, we

A DESIGN TIME SIMULATOR FOR COMPUTER ARCHITECTS

1000 |cOCOMO Model ———----]

750

500 IR N B -

Design Time (Days)

Il Il
1 1.1 1.2 1.3 1.4 1.5
Relative Size

Fig. 5: Design time for different project sizes assuming a single engi-
neer.

figure

800 T T T T T T T T

2]
o
o
T
.
1

400 | -

Design Time (ays)

n
o
o
T
—H
[
1

F = = = =

0 I I I I I I I I
0 2 4 6 8 10 12 14 16 18

Engineers

Fig. 6: Team size impact on design time.

figure

perform 200 simulations for each configuration. The error bar
is centered at the median of the design time, the line delimiters
the first quantile & the third quantile. To find the COCOMO
model parameters, we perform a regression using R [19]. For
the project shown in Figure 5 the COCOMO model uses a b
of 1.19, an very close to the COCOMO embedded projects 1.2
suggested constant. An initial observation from the plot is that
the economy of scale shown by DSim is consistent with soft-
ware models like COCOMO.

Project Team Impact

Software engineers are aware that compressing a project
schedule has a big impact on design effort. Doubling the num-
ber of engineers does not reduce the design time by half. The
reality is much worse, increasing the number of engineers in-
creases overheads and the project may not have enough inde-
pendent components for everybody. All the software projects
have a point when there is an exponential increase in design
effort for any further design time reduction.

Increasing the number of engineers can reduce the design
time of a given project. Figure 6 shows the impact on design
time as we increase the number of engineers on PUMA. Go-
ing from 1 engineer to 2 engineers reduces the design time by
30%. Adding two more engineers further reduces design time to
40%, six engineers reduce the design time by just 13%. Clearly,
adding more engineers does not significantly reduce the project
completion time. The reason is that PUMA is not complex
enough to keep more than 6 engineers working simultaneously
on the front end design without significant overheads. Another

900

"o Eng+ 1 ‘Eng Late
800 | B

700 E
2+1 worse than 2

o
TN

600
500
400

Design Time (Days)

300 .-
200

100]

0 20 40 60 80 100
% Completed

Fig. 7: Brook’s Law verification with PUMA. Adding an engineer late
to a project makes it later. Eng stands for engineer.

figure

key observation from Figure 6 is that adding engineers reduces
the unpredictability of the project. As the number of engineers
is increased we see that the first and third quantiles are closer to
the median, thereby reducing the unpredictability.
Brook’s Law

Brook’s Law [6] states that “adding people to a late project
makes it later”. To evaluate Brook’s law, Figure 7 evaluates
the impact of adding 1 additional engineer late to the PUMA
project while 3 engineers are involved from the beginning of
the project. The two dashed lines are the design times when 2
and 3 engineers join the project from the beginning. The solid
line corresponds to the case when 2 engineers start the project
and one additional engineer joins later. For the PUMA exam-
ple, as long as the engineer joins before 40% of the project is
completed, it is still possible to provide some design time re-
duction. Nevertheless, when the additional engineer is added
after 50% of the project is completed, the project finishes later.
Therefore, this behavior fully complies with observations from
Brook’s law.

IIL.D. Sensitivity Analysis
III.D.1 Engineer Model Characterization

uDSim is designed to be as simple as possible while achiev-
ing a high correlation with estimations of processor design
times. This section quantifies the importance of each of the pa-
rameters in the engineer model. After learning is deactivated,
we perform regressions with asynchronous and synchronous
communication. Each of the respective DSim simulations has
a degraded operation mode with a lower correlation against the
reported design times.

The correlation for the default uDSim is 0.98 as shown in
Table II The correlation obtained when learning is deactivated
from all the modules is 0.84. This shows that we cannot ig-
nore the learning process for engineers during the progress of
a project. We study the effects of communication in our model
by deactivating asynchronous communication in the simulator,
which results in a correlation of 0.90. Deactivating synchronous
communication further reduces correlation to 0.89.

III.D.2 Processor Description Characterization

The processor description in Section B makes two assump-
tions that are verified in this section: Cyclomatic complexity vs

lines of code as design effort metrics, and that the algorithm for
partitioning the components in a project is fairly insensitive to
component size.
Cyclomatic Complexity

Previous work [1] propose the use of the number of HDL
statements as a good proxy for design complexity. We use Cy-
clomatic complexity instead, because it is a metric easier to es-
timate for computer architecture projects and it is more resilient
to component size selection.

TABLE III: Cyclomatic complexity vs number of statements.
table

Module Measured Cyclomatic Stmts
Name Time median | median
PUMA 240 236 564
IVM 460 536 1103
SCALE 380 424 1019
OpenSPARC 440 454 1230
Victoria Falls 360 396 1428
Niagara 2 720 678 2100
[Correlation () | 1] 097 [089]

For the IVM, PUMA, and OpenSPARC projects, we have
access to the complete source code. Table III compares the
uDSim predictions when Cyclomatic complexity and number
of statements is used. The results show Cyclomatic complexity
is even better than lines of code. The reason is that as explained
in Section B, Cyclomatic complexity is more tolerant different
coding styles used across the projects.

We compute the correlation between the design effort and the
design times predicted by uDSim both with Cyclomatic com-
plexity and number of statements. A correlation as high as 0.97
indicates that Cyclomatic complexity is more suited for the pre-
diction of design times rather than number of statements.
Component Selection

It is difficult to select a component division that matches the
equivalent HDL file that engineers may perform if such design
is to be implemented. Using Cyclomatic complexity, implies
the feasibility of partitioning blocks, nevertheless, different par-
titions have different component graphs which can yield to dif-
ferent design times.

To validate the resilience of our approach, we evaluate
OpenSPARC. In this case, we join files before accounting for
the Cyclomatic complexity. By default, uDSim performs 7840
small tasks for OpenSPARC (design, code, test). We cluster
files to double the average task size, this reduces the number of
tasks to 4096 but only increases the design time by 3%. This is
a small difference as their respective standard deviation is over
10%. Even quadrupling the average task size (2368 tasks) only
changes the design time by 4%.

IILE. Architectural Example: Issue Logic

This section showcases the application of uDSim in the eval-
uation of an architectural proposal. While it is important to es-
timate the overall processor design time, most research papers
only focus on a small subsection of the processor. Here, we
evaluate the design time of two issue logic designs: SEED [5]
and the original IVM implementation. The proposed SEED
window delivers better frequency, power, and area. This favor-

able behavior under more traditional metrics, seems to imply
that SEED is superior to previous issue logic designs. This sec-
tion shows a step by step method to gather further insight by
evaluating the design effort of different competing designs.
Specify SEED Components

The design components are directly obtained from the au-
thors, we use the blocks explained on the SEED paper: Dis-
patch (Rename Extensions, Dispatch scoreboard and DepTable)
and Issue (Issue Buffer and Issue Scoreboard). To estimate the
Cyclomatic complexity for both components, we implement the
pseudo code for the control for each design and account the
number of independent paths. We estimate that the Dispatch
and Issue have Cyclomatic complexities of 96 and 88 respec-
tively *. The SEED paper includes synthesis results, and the au-
thors have disclosed that a it took a single student a full quarter
to implement the issue logic described in the paper.

Run uDSim with SEED

The TVM scheduler is a single component with 58 Cyclo-
matic complexity. To compare SEED vs the original IVM
scheduler, we replace the scheduler component by the 2 SEED
components (Dispatch and Issue). We perform 200 simulations
to obtain the design time distribution for a single engineer. The
original IVM ternary is (473, 536 ,620) while an IVM core with
a SEED window ternary is (515, 589 ,681). By looking at the
median, we can see that SEED window requires 589 days in-
stead of 536 days. This is an overhead of 53 days or close to
3 months which is consistent with the time reported by the au-
thors. We also performed a simulation with 2 engineers. In this
case, the design time increased from 384 days to 410 days or 26
days overhead.

In addition to the median design time, the ternary reported
by uDSim also includes a risk factor. The wider the difference
between first quantile and the third quantile indicates a higher
risk. Replacing SEED increases the difference from 66 days to
89 days for the 2 engineer simulation. This means that not only
SEED increases the design time by over two months but it also
increases the probability of having time overruns.

While the original SEED study includes performance, power,
and area estimations, it does not address design time impact.
uDSim makes possible to compare across designs, on this ex-
ample SEED requires 10% additional design time for an Alpha-
like processor.

IV. RELATED WORK

To our knowledge uDSim is the first simulator for the quan-
titative estimation of processor design time. There is little work
on the modeling and measurement of design complexity which
is a direct actuator on design time. yComplexity [1] introduced
a quantitative framework to measure the design effort (complex-
ity) for processors as well as Application Specific Components
(ASICs). This work identifies a set of design metrics which are
highly correlated with design effort. Most notably, the number
of lines of HDL code, and the linear combination of LoCs with
the sum of all the fan-ins for the logic cones in a design, are
both good estimators of design effort.

The work proposed by Zhang et al [20] measure verification
effort by using formal verification methodologies. They quan-
tify the verification effort as the number of reachable states in

4 Each of these blocks consist of several Cyclomatic complexity nodes.

A DESIGN TIME SIMULATOR FOR COMPUTER ARCHITECTS

a design, the testing effort is determined as the product of the
length of test vectors and the number of test patterns.

The field of software engineering has produced analytical
models like the Constructive Cost Model (COCOMO) [3, 21]
which uses a hierarchy of forms to estimate design effort, cost,
and schedule of software projects. Most COCOMO models
deal with static, single-valued models that compute design ef-
fort/cost as a function of the estimated program size. These
models can be further refined by including attributes for the de-
velopment tools, engineering skills, and project characteristics
that may act as “cost drivers.” Furthermore, the impact of those
attributes can also be assessed on each step on the software de-
sign process (requirements, design, coding and testing). The
SLIM model by Putnam [22] is another relevant estimator for
software development effort. This model also estimates design
time and effort as a function of project size. Most design effort
estimators for software projects share the same problem: they
require an accurate estimation of the size in LoCs of the project
to be analyzed. The model developed in [10] shows the effects
of communication on group productivity in software develop-
ment, uDSim presents a similar behavior by hardware design
teams.

Other studies in software engineering, such as Function Point
Analysis (FPA) [4], estimate both the size of the project and its
design effort. FPA reflects the amount of functionality that is
relevant for a project, independently of its implementation. This
analysis is based around a unit of measurement named “func-
tion points” (FPs) which estimates the size of an information
system. FPA relies on the determination of certain characteris-
tics of the software to be developed (inputs, outputs, operations,
files, etc.). By assigning FPs to each aspect of the project and
using data from past projects, it is possible to estimate the effort
required to implement the calculated FPs for the current project.

Research in industrial engineering and organization has pro-
duced a significant amount of results in economic simulation.
Delphi methods [23] introduced consensus-based estimation
techniques to predict the effort required for industrial and eco-
nomic projects. Finally, other project completion frameworks
rely heavily on Monte Carlo methods [24] to simulate the ran-
dom nature of many management problems.

V. CONCLUSIONS AND FUTURE WORK

This paper proposes a novel simulation infrastructure to es-
timate design time. As the evaluation shows, uDSim can esti-
mate the design time for a given processor design in a reliable
fashion. The capacity to estimate design time allows designers
to avoid possible complexity pitfalls, that are hidden otherwise,
early in the development cycle. This leads to shorter develop-
ment cycles.

uDSim is a simple but accurate design time estimator. We
use Cyclomatic complexity, a metric from software engineer-
ing, to understand the effort involved in implementing a specific
processor element.

Cyclomatic complexity is a key parameter, but it is not
enough to estimate the design effort. Decreasing the Cyclomatic
complexity by 10% does not yield a 10% design time reduction.
Cyclomatic complexity reductions yield different design time
reductions dependent on the overall design. uDSim is able to
find the design time change for a given Cyclomatic complexity
change.

The evaluation shows that uDSim achieves very high corre-
lation levels, 0.98, when predicting the design times for the pro-
cessor designs found in the testing set. The predictive nature of
uDSim allows it to solve some of the shortcomings of other de-
sign effort models [1], which require perfect knowledge of the
project and have to adjust for the productivity for each project
team.

The uDSim ternary allows designers to produce quantitative
estimations for the expected design time of their architectural
proposals. This allows designers further insight available during
the decision process between competing optimizations and ar-
chitectures. Without quantitative approaches to estimate design
times for design proposals, processor architecture lacks a very
important dimension of evaluation. For example, some studies
aim at reducing processor validation time, by adding hardware
support for bug location and tolerance [25,26]. Using uDSim,
designers can estimate the design time associated with the hard-
ware support required to implement these proposals. Thus al-
lowing the architect to determine, whether or not, the expected
reduction in validation time is overshadowed by the design time
required to implement a given enhancement.

UDSim can be extended to model different factors. For exam-
ple, uDSim assumes no reuse and it still achieves a very good
estimation for the Victoria Falls system which has an exten-
sive reuse from Niagara 2. Nevertheless, we think that uDSim
is a good starting point capable of predicting front-end and
verification design times for multiple academic and industrial
projects. We expect that further additions could add frequency
push, backend and reuse models.

VI. ACKNOWLEDGEMENTS

We would like to thank Jayakumaran Sivagnaname, Jiri
Gaisler, Nicholas Wang, Rodrigo Liang, and Krste Asanovic for
providing design time information. This work was supported in
part by the National Science Foundation under grants 0546819,
0720913, and 0751222; Special Research Grant from the Uni-
versity of California, Santa Cruz; Sun OpenSPARC Center of
Excellence at UCSC; gifts from SUN, nVIDIA, Altera, Xilinx,
and ChipEDA. Any opinions, findings, and conclusions or rec-
ommendations expressed herein are those of the authors and do
not necessarily reflect the views of the NSF.

REFERENCES

[1] C.Bazeghi, FJ. Mesa-Martinez, and J. Renau, “uComplexity: Estimating
Processor Design Effort,” in International Symposium on Microarchitec-
ture, Nov 2005.

[2] D. Weaver, “Personal communication,” Sun Microsystems, 2008.

[3] B.Boehm, Software Engineering Economics, Prentice-Hall, 1981.

[4] A. Abran and P. N. Robillard, “Function points analysis: an empirical
study of its measurement processes,” Software Engineering, IEEE Trans-
actions on, vol. 22, no. 12, pp. 895-910, 1996.

[5] EJ. Mesa-Martinez, M.C. Huang, and J Renau, “SEED: scalable, efficient
enforcement of dependences,” in PACT, 2006, pp. 254-264.

[6] David Brooks, Vivek Tiwari, and Margaret Martonosi, “Wattch: A frame-
work for architectural-level power analysis and optimizations,” Proceed-
ings of 27th Int’l Symp. on Computer Architecture, 2000.

[71 A.Mockus and J.D. Herbsleb, “Expertise browser: a quantitative approach
to identifying expertise,” in ICSE ’02: Proceedings of the 24th Interna-
tional Conference on Software Engineering, New York, NY, USA, 2002,
pp. 503-512, ACM.

[8] J.Wu, T. C. N. Graham, and P. W. Smith, “A study of collaboration in
software design,” in ISESE ’03: Proceedings of the 2003 International
Symposium on Empirical Software Engineering, Washington, DC, USA,
2003, p. 304, IEEE Computer Society.

[9] R Glass, Facts and fallacies of software engineering, Addison-Wesley,

Reading, Massachusetts, 2002.
D Simmons, “Communications: a software group productivity domina-
tor,” Softw. Eng. J., vol. 6, no. 6, pp. 454-462, 1991.

[10]

10

(11]
[12]
[13]
[14]

[15]
[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]
[24]

[25]

[26]

T. J. McCabe, “A Complexity Measure,” in IEEEE Transactions on Soft-
ware Engineering, 1976.

A. H. Anderson, G. S. Downs, and G. A. Shaw, “RASSP Benchmark-1
and -2: A Preliminary Assessment,” 1995.

T.R. Halfhill, “Ibm trims power4, addds altivec,” in Microprocessor Re-
port, 2002.

G. Karypis and V. Kumar, “A Fast and High Quality Multilevel Scheme
for Partitioning Irregular Graphs,” SIAM J. Sci. Comput., vol. 20, no. 1,
pp. 359-392, 1998.

Collett International, “2003 IC/ASIC Design Closure Study,” 2003.

N.J. Wang, J. Quek, T.M. Rafacz, and S.J. Patel, “Characterizing the
Effects of Transient Faults on a High-Performance Processor Pipeline,”
in International Conference on Dependable Systems and Networks. Jun
2004, IEEE Computer Society.

R.Krashinsky, C.Batten, M.Hampton, S.Gerding, B.Pharris, J.Casper, and
K.Asanovic, “The vector-thread architecture,” IEEE Micro, vol. 24, no.
6, pp. 84-90, 2004.

J. Cohen, Statistical Power Analysis for the Behavioral Sciences,
Lawrence Erlbaum, 1988.

r, R: A language and environment for statistical computing, R Foundation
for Statistical Computing, Vienna, Austria, 2005.

M. Zhang, A. Lungu, and D.J. Sorin, “Analyzing Formal Verification and
Testing Efforts of Different Fault Tolerance Mechanisms,” in Proceed-
ings of the 2009 24th IEEE International Symposium on Defect and Fault
Tolerance in VLSI Systems. IEEE Computer Society, 2009, pp. 277-285.
B. Boehm, B. Clark, E. Horowitz, C. Westland, R. Madachy, and R. Selby,
“Cost models for future software life cycle processes: COCOMO 2.0,”
Annals of Software Engineering, vol. 1, no. 1, pp. 57-94, Dec 1995.

L. H. Putnam, “IEEE Transactions on Software Engineering,” in A
General Empirical Solution to the Macro Software Sizing and Estimating
Problem, 1978.

H.A. Linstone and M. Turoff, The Delphi Method: Techniques and Ap-
plications, Addison-Wesley, 1975.

T. Menzies, Zhihao Chen, J. Hihn, and K. Lum, “Selecting Best Practices
for Effort Estimation,” IEEE Transactions on Software Engineering, vol.
32, no. 11, pp. 883-895, 2006.

S. Park and S. Mitra, “Ifra: Instruction footprint recording and analysis
for post-silicon bug localization of processors,” in Design Automation
Conference, Jun 2008.

K. Constantinides, O. Mutlu, and T. Austin, “Online design bug detec-
tion: Rtl analysis, flexible mechanisms, and evaluation,” in 41st Annual
International Symposium on Microarchitecture (MICRO-41), Nov 2008.

