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ABSTRACT
Processors emit non-trivial amounts of electromagnetic radiation,
creating interference in frequency bands used by wireless com-
munication technologies such as cellular, WiFi and Bluetooth. We
introduce the problem of in-band radio frequency noise as a form
of electromagnetic interference (EMI) to the computer architecture
community as a technical challenge to be addressed.

This paper proposes the new idea of Dynamic EMI Shifting
(DEMIS) where architectural and/or compiler changes allow the
EMI to be shifted at runtime. DEMIS processors dynamically move
the interference from bands used during communication to other
unused frequencies. Unlike previous works that leverage static tech-
niques, DEMIS dynamically targets specific frequency bands; the
type of techniques used here are only possible from an architec-
tural perspective. This paper is also the first to provide insights in
the new area of dynamic EMI shifting by evaluating several plat-
forms and showing the EMI is sensitive to many architectural and
compilation parameters.

Our evaluation over real systems shows a decrease of in-band
EMI ranging from 3 to 15 dB with less than a 10% average perfor-
mance impact. A 15dB EMI reduction for LTE can represent over
3x bandwidth improvement for EMI bound communication.

CCS CONCEPTS
• Hardware → Noise reduction; Wireless devices; Signal in-
tegrity and noise analysis;
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1 INTRODUCTION
As mobile devices become more ubiquitous and wireless commu-
nication technologies become more diverse, we want our mobile
devices to be able to interact with a wide variety of communication
technologies. We present to the computer architecture community
the problem of in-band electromagnetic interference (EMI) caused
by the processor. That is, when a processor is running, it may be
emitting Radio Frequency (RF) interference, or EMI, at the same
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frequencies the device is using for wireless communication, causing
interference. Unfortunately, the Shannon-Hartley theorem states
that this interference constrains the speed that data can be sent
wirelessly.

Computer processors emit non-trivial amounts of electromag-
netic radiation; enough that the EMI can be exploited as a security
risk [10, 11]. In addition to being a security concern, EMI can also
interfere with wireless communication, which is the focus of the
work presented in this paper. Even when running just the operating
system, the processor will emit radiation at some frequencies. The
EMI produced by a processor can create significant desensitization
of the antenna, and is a well-known obstacle in the field, which
many different publications and patents are dedicated to address-
ing [5, 15, 24, 27]. Currently, one way to mitigate this problem is
to place the computer processor as far away as possible from the
antennas [15, 25] to minimize the effect of the processor’s EMI.
However, modems are placed as close as possible to the antennas
in order to mitigate losses before the signals are processed. With
the introduction of more integrated chips such as the Snapdragon
series, some of which include wireless communication processors,
the CPUs are now no longer to be physically isolated this way
from the antennas. This problem also tends to get worse with the
emergence of smaller, more integrated devices such as wearables.

Although the EMI is deterministic, it is difficult to accurately pre-
dict what a processor will emit for a given application. A potential
solution is to use Full Wave Simulation software [2, 17, 30] but this
is prohibitively slow, in the same manner that requiring full SPICE
simulations for a whole chip is not really feasible. Additionally this
solution requires a layout, and would not be usable until the chip
is ready for tapeout, at which point the designers would need to re-
design many completed components. Currently, a feasible solution
for finding and addressing EMI produced by a processor does not
exist. Designers lack usable models, and these models would be too
complicated to actually run. Typically, designers do not realize they
have an EMI problem until after a system has been prototyped and
evaluated, which puts them in the unfavorable position of having
to apply costly and usually ineffective patches, or going back and
redesigning the system [15].

This work proposes a novel Dynamic EMI Shifting technique, or
DEMIS for short. DEMIS is based on the observation that wireless
communication systems use many frequency bands, but not all
the bands are used simultaneously and can alleviate the proposed
problem by moving RF interference out of the bands being used for
communication in a given time.

To illustrate this potential, Figure 1 shows the noise level cap-
tured from a spectrum analyzer for a Exynos 5433 processor running
SPEC2006 hmmer application. This type of plot has frequency in
the x-axis and radiated power in dBm in the y-axis. The higher
the radiated power the higher the EMI. The plot shows a Super-
WiFi XR7 frequency band. If we focus on this WiFi band, there
is a higher EMI. From a communication point of view, we want
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Figure 1: Changing compile options for the SPEC2006 hm-
mer benchmark on an ODROID-XU4 (Exynos 5422 chip)
causes a significant difference in noise in the SuperWiFi XR7
frequencies (grey) with only a small change in performance.

the lowest possible amount of noise. Each line shows a different
compilation option for hmmer from the SPEC2006 benchmark suite.
The second option has a small 3% performance impact, but it has
close to 6dB (or 4× power) reduction of in-band noise.

Since workload, compiler, architecture, and layout are neces-
sary for understanding and addressing this problem, this belongs
to the classical architectural domain where impact on execution
performance and the interface between compiler/architecture/VLSI
layers have different trade-offs. Computer architects are uniquely
suited to provide solutions for minimizing in-band EMI from the
processor.

In this work, we provide measurements of several processors
running different applications to provide insights about EMI. As
expected (and shown in previous work [10, 11]), running different
processes on the same core will produce different EMI. This work
shows and quantifies that small changes in the application may
cause significant EMI shifts. We show that running the same appli-
cation on two different chips causes very different EMI, to the point
that an application can have very good noise levels in a core and
very bad in another core. Although some cores have the same RTL,
if they are manufactured in different fabs, they may not produce
similar EMI. Running the same application on different cores may
yield vastly different EMI. We particularly show that the interac-
tion between core, process, and application has a deterministic, but
very unpredictable result in EMI interference for a given frequency
band. We experimentally show that small architectural changes
with small performance impact have a big impact on EMI.

Additionally, this work proposes a Dynamic EMI Shifting enabled
platform, or DEMIS for short, which leverages the insights about
techniques to dynamically shift the interference to out of a band of
interest. Notice that DEMIS does not reduce noise in all the bands
like static EMI techniques. Instead it reduces the interference in
the band currently used for communication. Figure 2 shows our
proposal for the DEMIS system, which will monitor its own EMI
and adjust its execution accordingly. The layout of this system is
based on the Snapdragon 821 layout, which contains the Qualcomm
Snapdragon X12 LTE modem and the Qualcomm Kyro CPU on die,
but has an additional small DEMIS unit (in grey) that provides
directives to the CPU based on the interference.

The main contributions of this paper are:
• Proposing DEMIS, a dynamic methodology based on EMI
measurements to reduce in-band EMI during runtime via
manipulation of architectural and compiler parameters

DEMIS Unit

Modem

CPU

Other
Components

SoC Die
Package

Antenna

Figure 2: Proposed DEMIS architecture monitors the EMI
and provides directives to the processor to change emitted
interference.

• Showing that EMI produced by the core is dependent on
architectural parameters

• Measuring several real devices to quantify EMI produced
• Presenting the problem of in-band radio frequency noise as
a form of EMI to the computer architecture community

After providing some background on RF and EMI in Section 2
and related work in Section 3, we describe our experimental setup in
Section 4. Then, we present the techniques and insights we utilized
to identify the impact architectural parameters have on EMI in
Section 5.We then provide an evaluation of DEMIS, leveraging these
insights in Section 6 and show the effects on SPEC2006 benchmarks.
Our conclusions and future work are provided in Section 7.

2 EMI BACKGROUND
This paper deals with the electromagnetic radiation from the proces-
sor that causes interference for the device’s wireless communication.
Since EMI may be an unfamiliar topic to parts of this community,
this section aims to provide an overview of the main concepts and
technologies involved. This is not meant to be a complete intro-
duction to the subject. We start with a brief revision of wireless
communication, with a focus on channel capacity and noise, and
then explain the most common technologies used in mobile devices
that could be affected by electromagnetic radiation from the CPU.

2.1 EMI Overview
Wireless communication is an important feature of most modern
computational system, particularly for mobile devices. Wireless
communication usually relies on allocating a specific frequency
band in which data is transmitted according to a technology-specific
protocol. Regardless of which specific protocol is being used, the
theoretical amount of data that can be transferred through a chan-
nel depends on a certain number of factors, like the bandwidth
and the Signal to Noise Ratio (SNR). This relation is governed by
the Shannon-Hartley Theorem (Equation 1), which states that the
channel capacity (C), or the theoretical upper bound on the net bit
rate, is affected by the bandwidth (B) and the SNR ( SN ). Since SNR
is the quotient between noise and signal strength, the lower the
noise the higher the bandwidth. Figure 3 shows a visualization of
the Shannon-Hartley Theorem for typical values for LTE, with a
bandwidth of nine megahertz.

C = B ∗ loд2(1 +
S

N
) (1)

Therefore, for a fixed bandwidth and signal strength, increasing
the amount of noise will reduce the total channel capacity available,
reducing the total amount of data that could be transmitted through
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that channel. In this work, we explore the noise emitted by the
processor that could interfere with the wireless communication
technologies in a device.
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Figure 3: The amount of noise drastically changes the maxi-
mum theoretical bandwidth at a particular frequency at dif-
ferent signal strengths (S = signal strength in dBm).

To do so, we assume that the signal strength is out of our control
as in practice (as signal strength depends primarily on environ-
mental factors), and thus we focus only on minimizing the noise in
order to improve the SNR and thus the bandwidth.

Unfortunately, EMI is produced any time current is present in a
system, and thus computer processors constantly emit non-trivial
amounts of noise. Fortunately, wireless communication is depen-
dent on specific frequencies, and thus a device only needs certain
frequency bands to be less noisy at a given time. Common sources
of noise are the clock, its harmonics, memory accesses, and even
power converters; these will be discussed later in this paper.

2.2 LTE
LTE is the current standard for cellular communication and was
developed with the main objective of improving the communica-
tion rates to and from a cell phone. However, with the advent of
smartphones, the noise emitted from the phone’s CPU can interfere
with communication. This section provides a brief introduction
to cellular communication technology LTE with a focus on com-
ponents related to DEMIS. LTE (and wireless communication in
general) is commonly divided into frequency bands allocated to
different users.

In order to connect to a network tower, a device utilizes two
different radio links, one for uplink (where the data goes from the
device to the tower) and one for downlink (tower to device) [16].
Most LTE bands are Frequency-Division Duplex (FDD) meaning
that the uplink (UL) and downlink (DL) connections operate at dif-
ferent frequency bands between 10 MHz and 400 MHz apart, thus
allowing them to happen at the same time [1], meaning communi-
cation happens at multiple frequencies simultaneously. However,
some LTE bands use Time-Division Duplexing (TDD), which means
that UL and DL occur at the same frequency, but at different times.
The band selection is determined by many factors such as signal
strength and band congestion and is usually out of the control of the
user, since it is mostly defined by the tower, but higher-frequency
bands are usually preferred since they can send more data.

A noisy band may lead the network to trigger a band switch. The
noise may be due to congestion, interference with other networks or
simply because the CPU on the cell phone is emitting noise. In this
paper we show that architectural parameters can be manipulated

to reduce the amount of in-band noise while communication is
happening to reduce interference from the core to the antenna.

The implication for DEMIS is that to improve LTE bandwidth,
only one or two bands of communication need to be cleared. The
band to be cleared is not known a priori, and thus a dynamic band
EMI management has high potential benefits.

2.3 Bluetooth
Another technology that is commonly implemented in mobile de-
vices and could suffer from processor EM radiation is Bluetooth.
Bluetooth operates at 2.4 GHz, and the entire Bluetooth spectrum
spans 83 MHz. Each of the 79 Bluetooth channels has a bandwidth
of 1 MHz [7]. The reason for so many channels is that Bluetooth
utilizes a Frequency Hopping Spread Spectrum (FHSS) technique,
which utilizes each channel in a preset sequence negotiated by both
the master and slave when they are first connected. The channel
hopping occurs regularly according to that predetermined sequence
known to both the transmitter and the receiver.

Bluetooth’s high frequency limits the communication distance
and also makes it more susceptible to interference. Therefore, it
is more crucial to prevent noise from a nearby source, such as
that device’s own CPU. Like in LTE, DEMIS can further reduce
interference focusing on the bands being used at the moment.

2.4 WiFi and WLAN
Finally, another ubiquitous technology that may suffer from EMI
from the CPU is WiFi, present in virtually every mobile device on
the planet. WiFi operates at both the 2.4GHz and 5GHz (802.11a,
n, and ac) frequencies. Older WiFi protocols use frequency hop-
ping (similar to Bluetooth) or spread spectrum transmissions, while
newer versions use Orthogonal Frequency Division Multiplexing.

Additionally, the 802.11af standard (also known as White-Fi or
Super WiFi) operates in the 54 to 790 MHz range (in bands licensed
for TV, VHF, and UHF) and has been in use since 2014. White-Fi
uses frequency channels with bandwidths ranging from 6 to 8 MHz,
and can use up to four channels at once in one or two contiguous
blocks. Although operating at different bands and having different
bandwidths, WiFi also divides the spectrum in different bands,
dynamically assigned to each device. The communication speed
of WiFi and WLAN can also be reduced due to the presence of
in-band noise created by the CPU, and thus could also be improved
by DEMIS.

3 RELATEDWORK
This section provides a description of some of the current findings
relevant to electromagnetic emanations on processors.

3.1 On-Chip Interferers
Although this is not a security paper, one of the most prevalent
concerns with EM emissions in the computer architecture com-
munity is that they can be exploited as a side-channel by hackers.
SAVAT [10] determines the impact a single instruction has on the
RF signal produced by running a program. The authors were able
to distinguish single instructions via studying differences in EM
radiation. Thus, showing that radiation patterns of some hardware
is dependent on what software is running. We can conclude that ma-
nipulating the architectural components of a processor will modify
the EM emissions, as the same program will be executed differently.
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Table 1: System specifications for each device measured.
Device Commercial Name Processor ARM Core Operating System CPU Clock (GHz) DDR Clock (MHz)
A8_A10 Allwinner A10 Allwinner A10 Cortex A8 Ubuntu 1.2 800
A53_K620 HiKey (LeMaker version) Kirin 620 Cortex A53 Linaro 1.2 800
A11_PI2 Raspberry Pi 2 Broadcom BCM2835 ARM11 Arch Linux, Raspian (Dual Boot) 0.9 400
A53_C2 ODROID-C2 Amlogic S905 Cortex A53 Arch Linux 1.5 912
A15_XU4 ODROID-XU4 Exynos 5422 Cortex-A15 Ubuntu MATE 2.0 933

FASE [11] is a methodology for finding periodic signals (such
as a clock signal) whose amplitude is dependent on processor or
memory activity. The authors found that the signals generated by
a processor fall into three main categories: strong signals from
voltage regulators and power filtering components at the switching
frequencies of the regulators, signals from memory-refreshes, and
high frequency clock signals and clock harmonics, especially DRAM
clocks. They note that all three of these types of signals are affected
by what the processor is doing. For example, the signals from the
voltage regulators are affected by how much activity is occurring in
the processor —the more activity, the higher power consumption,
the stronger the signal. The signal caused by memory refreshes are
caused by activity by the memory controller, and the EMI from the
DRAM clocks are dependant on DRAM activity.

Recently, Sehatbakhsh et al [29] have been using a CPU’s elec-
tromagnetic radiation to profile code as well. They have shown
a correlation between the amount of time a loop takes (T ) and
a frequency “spike” in the EMI (f = 1/T ). Some of our findings
may be influenced by this phenomenon. However, the measure-
ments presented in this paper show that two processors can exhibit
very different EMI, even when the two processors have the same
RTL and are running the same benchmark compiled with the same
options. This clearly shows that [29] has potential, but it is not
obviously applicable, and we consider it future work for potential
improvements.

RF ICs are vulnerable to on-chip in-band interferers [4], and
may contain circuit-level RF noise couplings that would have a
significant impact on system-level performance of wireless commu-
nication performance. Unfortunately, finding the cause of interfer-
ers is extremely complicated and have so many technical aspects,
that achieving a reliable estimation using computer simulations
is impossible. Although not strictly EMI, EmerGPU [32] detects
and mitigates resonance voltage noise (which causes EM noise) in
GPUs. In order to reduce voltage noise, some techniques include
reducing the slope of current changes via hardware or software
mechanisms.

3.2 Interference from the clock
There has been a lot of work done on minimizing the interference
from the clock [19, 20, 22, 23]. As clock speeds tend to be lower than
the frequencies used by wireless communications, it is the clock
harmonics that have an adverse affect on signal. Therefore, it is
common for chips to have modulated clock signals, slightly chang-
ing the cycle time of the clock every cycle. By modulating the clock
signal, the attenuation for the harmonics is significantly increased,
and therefore the harmonics at the communication frequencies are
much lower than for an unmodulated clock signal.

3.3 Static Techniques to Reduce EMI
Currently, for LTE, the interference reduction techniques being
utilized include only static techniques1. These techniques address

1Information described in this and the following two paragraphs was acquired from
personal contacts in industry.

two separate cases: noise from on-die interferers, and noise from
an external source (such as the antenna itself).

The most consistent on-die interferer is the clock. Even low-
frequency clocks tend to interfere with communication frequencies,
as even the twenty fifth harmonic can create frequency spikes that
add non-negligible noise in-band. In fact, some devices fully power
down their cores in order to avoid noise during the transmit (TX)
phases of communication.

Off-chip interference can be caused by power coupling issues.
Even with separate power converters, some parasitics still propa-
gate from core to core. Additionally, during simultaneous TX and
receive (RX) actions, noise from the transmit antenna can over-
power the received signal, and thus multiple high- and low-pass
filters are utilized, and in some cases, the TX signal is fully sub-
tracted out of the received communication. Furthermore, DRAM
is often the cause of interference, especially when placed off-chip.
However, moving the DRAM on-chip creates less interference.

For Bluetooth, successful operation in the presence of external
interferers such as microwave ovens or WiFi networks is to pro-
vide some shielding or distance from the cause of the noise [8].
As Bluetooth operates at a relatively high frequency, any in-band
interference degrades quickly as distance increases, and even more
rapidly through physical objects.

However, if the same device is utilizing both WiFi and Bluetooth,
reducing the interference becomes more complex. Currently, col-
laborative techniques (such as alternating transmissions between
Bluetooth and WiFi, or managing packet transmissions based on
signal strength) and non-collaborative techniques (such as clas-
sifying the Bluetooth channels and altering the channel hopping
algorithm to avoid noisy channels) are being investigated [8].

3.4 Dynamic Processing and Execution
As shown throughout this paper, the EMI signature of a process is
dependent on several factors and is different when run on proces-
sors with the same RTL but manufactured in different fabs. This
makes it virtually impossible to know beforehand the EMI signa-
ture of a process. Furthermore, a processor will not know which
bands will be used for communication during the runtime of that
process. Hence the decision of which techniques to use to reduce
in-band noise needs to be done at runtime. This section highlights
some current techniques that a DEMIS processor could utilize, but
evaluation of these techniques is out of the scope of this paper and
is reserved for future work.

With DEMIS, we leverage the fact that the EMI signature of a
process can be changed by changing architectural parameters such
as introducing delays, changing compiler options and so on. This
is not possible with regular compilation/execution flows, as those
changes need to be made at compile time and cannot be changed
during runtime. However, there are tools a DEMIS processor can
utilize to change how a process is executed at runtime such as
Just In Time compilers (JITs) and interpreted languages. For non-
JIT systems, it is possible to switch binaries at runtime, assuming
multiple binaries compiled with different compilation options are
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Figure 4: We utilized a spectrum analyzer and near-field
probes to accurately measure the EMI from multiple hard-
wares running a set of benchmarks.

available. Though this is not standard operation, it is not hard to
do so form an OS perspective.

Most mobile devices already use JITs, e.g., the discontinued
Dalvik [9] and the new JIT introduced in Android 7.0 Nougat [13].
Furthermore, many JITs have been developed for Java [3, 31, 34].
JITs are also widely used during internet browsing on all platforms,
with a strong emphasis on JavaScript [12, 14, 18, 26, 28, 33]. Al-
though these tools are almost exclusively geared towards efficiency,
they can be repurposed to minimize in-band EMI.

In addition to JITs, there are other tools that dynamically switch
how a process is being executed. For example, Dynamo [6] switches
between binaries during execution in order to capitalize on runtime
optimization opportunities. There are also many other tools that
switch binaries at runtime.

4 SETUP
In this section, we describe the experimental setup in order to de-
termine the effect architectural parameters have on EMI, including
a description of the hardware used and the benchmarks that were
executed.

4.1 Test Equipment
The measurements were taken using a Near-Field Probe set made
by Keysight Technologies, which was attached to an N9342C Hand-
held spectrum analyzer from Agilent Technologies. We show the
deployment in Figure 4. Additionally, we fixed the probe onto the
device for consistency, as there can be a substantial differences in
measured power when measuring different locations.

The specifications of the five devices measured are provided in
Table 1. In this paper, we will refer to the devices as in the first
column of Table 1.

4.2 Benchmarks
We measured each device while it was idling as well as while it
was running a series of benchmarks. We utilized a set of in-house
benchmarks, described in Section 5 and SPEC2006 applications,
to determine if using architectural techniques would be effective
for manipulating EMI in specific bands. From there, we utilized

the SPEC2006 [21] benchmarks to determine the effects on larger
processes.

Each device ran all the benchmarks from the SPEC2006 bench-
mark suite2 natively on each device during measurements with
the default settings for each device (without modifying the clock
speed, etc.) as a baseline. Then, the benchmarks were run when
changing different architectural parameters, including compiler
optimizations.

Due to space constraints, the insights section focuses more the
mcf, sjeng, and libquantum benchmarks. These benchmarks were
chosen because they emphasize specific architectural parameters:
mcf is memory intensive, with many RAM accesses; sjeng causes
many branch mispredictions and calculations; and libquantum trig-
gers many cache misses and prefetching.

4.3 Bands Analyzed
The noise was measured in the scope of wireless communication
technologies and is reported as the difference between emitted
power when running the benchmark and idling for five different
RF communication frequency bands:

• LTE 800 Lower LTE band 18, between 815 and 875 MHz
(UL and DL).

• LTE 700 Split between LTE bands 12, 13, 14, and 17, between
699 and 798 MHz (UL and DL).

• LTE 450 LTE band 31, between 452.5 and 467.2 MHz (UL
and DL).

• SuperWiFiXR7Ubiquity XtremeRange7 frequency forWiFi,
between 698 and 746 MHz.

• SuperWiFi 600 SuperWiFi in TV spectrum, 600 and 630
MHz (pending confirmation).

5 INSIGHTS AND MEASUREMENTS
This section uses physical real system measurements to identify
the effects of architectural and compiler parameters on RF noise.
Through measuring in-house benchmarks on the hardware de-
scribed in Table 1, we were able to determine that different param-
eters affect the RF noise differently. This section will describe our
findings when measuring the differences in noise when applying
different architectural manipulations.

5.1 Compiler Impact on EMI
To evaluate small binary changes impact on EMI, we use different
compilation options (different schedulers or optimizations) that
should have small performance impact to see the EMI effect. For
example, using the O2 or the O3 compilation options, or changing
the scheduling using the -mtune option.

Figure 5 shows the noise level and the IPC for the first 100
seconds of execution of mcf when executed on the A11_PI2. The IPC
plot shows that the performance does not change when switching
from O2 (option 1) to O3 (option 2) for mcf. Nevertheless, we see
over 3dB noise reduction in the most noisy band (LTE 700) using
O2, while the LTE 450 band has an increase in noise with O3. This
means that for the mcf application, if we want to avoid noise in the
LTE 450 band we should use O3 whereas O2 should be used if the
communication is in the LTE 700 band.

We repeated the same experiment on the A8_A10 platform to
understand the impact of hardware changes. The noise levels across

2Due to compilation issues, gobmk, omnetpp, and xalancbmk were not included in
this experiment.
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Figure 5: Runningmcfwith different compile options on the
A11_PI2 yielded minimal difference in IPC, while still yield-
ing a 3 dB swing in EMI at certain bands.

the spectrum are shown in Figure 6, which also shows the baseline
noise level when the core is powered on, but idle. Unlike in the
A11_PI2 case, the O2 improves noise compared to the O3 option
for both LTE 700 (by 2dB) and LTE 450 (by 3dB). Again, for mcf the
O2 and O3 does not significantly change the performance in this
platform.
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Figure 6: Different compilation options change the EMI in
the mcf benchmark on the A8_A10 processor without per-
formance impact.

To analyze its impact on another application, Figure 7 depicts the
EMI of the A53_K620 processor running the sjeng benchmark after
being compiled O3 and O2. In this case, the O3 compilation option
yields a 1% speedup. The noise shifts in frequency slightly, and in
most cases the O3 has a higher EMI. For this board mcf showed a
similar behavior as sjeng with O2 having less noise.

Figure 8 shows the case that only mtune option is changed for
hmmer application. We keep the default -march=native which im-
plies a -mtune=native, and change the -mtune to cortex-a57. In
this case, it has no performance difference when executing in the
A11_PI2. The plots shows another case of clear shift in the frequency
around 600MHz with little performance impact.

The maximum noise reduction for the 5 analyzed bands playing
with O2, O3 and mtune options was 8dB in the bzip2 benchmark
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Figure 7: When running sjeng on the A53_K620 processor,
the EMI being produced changed based on the optimization
the benchmark was compiled with.

(not shown in the plots). Also, as expected, the compilation options
can have a big performance impact. For example, in bzip2 the mtune
has over 30% improvement when applied in the A15_XU4 board
(also not shown in the plots due to length constraints). For the
evaluation we do not use the cases with high performance impact.
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Figure 8: Compiling hmmer with different mtune options
has no performance impact but a change in EMI.

In an attempt to further understand the effect of the compiler
on the EMI, we performed an exhaustive set of measurements
on the A53_K620 board. We measured the EMI across multiple
bands, disabling only one minor optimization from the full O3
optimizations at a time. There are 11 gcc flags that differentiate
between O2 and O3 with gcc 6.3.1.
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Figure 9: In-band EMI in the LTE 700 band emitted by the
A53_K620 boardwith respect to execution time.Wewere un-
able to find a correlation between efficiency and EMI.

Figure 9 shows the normalized execution time versus the nor-
malized EMI for LTE 700 for each of the compilation options. Each
dot corresponds to the O3 optimization with one of the 11 flags
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Figure 10: Noise created in each band running SPEC2006 benchmarks on the A53_K620 and the A11_PI2.

disabled. Since we also keep the O3 optimization, there are 12 points
per benchmark. The x-axis shows execution time normalized to
the fastest execution for that benchmark, and the y-axis shows the
EMI improvement with respect to the worst EMI for LTE 700 in dB.
Unfortunately, we were unable to discern a consistent correlation
between optimization, runtime, and EMI. For example, disabling
the fgcse-after-reload optimization has a 40 dB EMI reduction with
small slowdown for mcf, but only a 2 dB EMI reduction for hmmer,
and 9 dB for sjeng (both also with small slowdowns).

In Figure 9, the points marking the fastest runtime and best
EMI improvement are marked for each benchmark. For the hm-
mer benchmark, the point marked “h-e” for best EMI improvement
ran with the fpeel-loops optimization disabled, and had a 1 dB
improvement over the fastest run (marked “h-t”), which had the
ftree-partial-pre optimization disabled. In the case of this bench-
mark, there is a 0.3x slowdown between the best EMI and the fastest
execution time. The mcf benchmark ran fastest with the ftree-loop-
vectorize optimization disabled (“m-t”), but with a 0.009x slowdown,
disabling the fcse-after-reload optimization (marked “m-e”) offered
a 12 dB improvement. Lastly, the sjeng benchmark ran fastest with
fpredictive-commoning disabled (“s-t”), but disabling the ftree-slp-
vectorize optimization (“s-e”) offers over 25 dB improvement with
only a 0.03x slowdown.

Clearly, there is no correlation between the optimizations that is
standard across benchmarks, even across different bands, there is
no discernible relationship. Although potential for future work, we
decided not to use multiple binaries, and we restrict ourselves to
just O2 vs O3 in the rest of the paper. Keeping many binary files
would take up an excessive amount of space and raise tune/selection
algorithm issues.

The main conclusion is that by adjusting the compilation options
and constraining cases to a small performance impact, we can
achieve up to 8dB noise reduction levels with many cases providing
3dB reduction. A source of difficulty managing the system is that the
effect is not only compiler dependent but compiler/core/platform
dependent. The same compilation options yield opposite results in
different processors.

In this paper, when we talk about compiler techniques we mean
to change the compiler options (O2/O3/mtune) and select the binary
with the lower noise in the band to protect. Although not covered in
this work, a JIT based system would be the best platform allowing
to dynamically perform small binary changes to mitigate noise
while monitoring the noise level impact.

5.2 Benchmark Impact on EMI
Clearly, EMI is different depending on the application [10, 11]. How-
ever, EMI also changes on a per-band basis. Figure 10 shows the
average and maximum EMI in the five different RF bands on the
A53_K620 and the A11_PI2. The noise depicted is the difference
between emitted power when running the benchmark at each fre-
quency with respect to an idling processor. However, it is hard to
see a relationship between the in-band noise and benchmark that
is consistent across processors.

Thus far, all the measured data presented in this paper have
been the average of noise per frequency over a sustained amount
of time. However, many programs go through different phases
during execution. As the different phases tend to run different types
of instructions, it stands to reason that the radiation at different
frequencies will be different during different phases.

Figure 11: IPC and EMI for mcf on A11_PI2. The proces-
sor goes through phases with different EMI patterns. In this
case, it seems that when there is lower IPC, there is more
EMI.

Figure 11 shows these phases as the mcf benchmark is run on
the A11_PI2 processor over time, the noise is shown as a color map
per frequency and time. Interestingly, as the IPC decreases, there
appears to generally be more RF radiation. From these results it
is not clear why this behavior happens, but it could be related to
changes in processor activity.

Figure 12 depicts the IPC and phases of the A53_K620 processor
running the sjeng benchmark. In contrast to the A11_PI2 running
mcf, in many cases the A53_K620 has more noise when the IPC
is higher for the sjeng benchmark. Nevertheless, the clear EMI
fluctuations are related to IPC changes but it is not a direct function
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Figure 12: For the sjeng benchmark on the A53_K620, it is
more clear that the processor goes through phases with dif-
ferent EMI patterns. When compared with the IPC, there is
no clear higher/lower EMI correlation, just change.

of IPC because sometimes higher IPC means lower noise in some
bands (which can be seen in in the LTE800 Lower band in Figure 12.

In addition to only observing the phases per benchmark, we also
performed some measurements over time with different input sets.
Although the different input sets caused each benchmark to spend
different amounts of time in each phase, the EMI during each phase
remained unchanged for the benchmarks measured in this paper.

The main conclusion is that there are clear program phases in
IPC and EMI as the application executes but the IPC phases are
not necessarily correlated with EMI phases. Although sometimes
an IPC increase results in an EMI increase, in many phases an IPC
increase results in an EMI reduction. Adapting through phases has
potential benefit and the phases can be detected with IPC phase
changes.

5.3 Cache Impact on EMI
Cache accesses consistently affect the amount of RF noise being
emitted by each chip. In order to observe how cache accesses af-
fected the RF noise created by each processor, we utilized a synthetic
program that emphasizes accessing a large 2D array and injected a
delay before the cache misses (Listing 1).

1 int main () {
2 int total = 0;
3 for(int i=0;i <8192;i++) {
4 for(int j=0;j <8192;j++) {
5 //asm("nop);
6 total += matrix[j][i];
7 }
8 }
9

10 printf("total =%d\n",total);
11 }

Listing 1: Function for testing code with frequent cache
accesses. Delays (nop calls) were inserted at line 5. The
numbers in lines 3 and 4 were manipulated based on the
cache sizes for each processor in order to ensure the desired
cache misses were occurring (L1 or 2).

The first thing we noticed was that there was a distinct difference
in frequency and amplitude between L1 and L2 cache accesses, as
shown in Figure 13, which we determined by manipulating lines
3 and 4 in Listing 1. Clearly, L2 cache accesses trigger more noise
than L1 cache misses, presumably because an L1 cache access (miss)

����

���

���

���

���

���

���

���� ���� ���� ���� �����

�
�
�
��
��
�

�
�
�
�
�
��
��
�
�
�

���������������

�������� �������� ��������

Figure 13: The noise created by accessing the L1 and L2
caches on the A8_A10 processor is significantly different.

is required for an L2 cache access to trigger. However, at some
frequencies L1 cache accesses are noisier, which may be attributed
to the fact that L2 caches are slower and would therefore interfere
with different frequencies. Unfortunately, a processor would take
a huge performance hit should it forgo accessing the L1 cache in
favor of the L2 cache, so we focused on techniques that would take
less critical performance hits, despite the EMI benefits.

����

���

���

���

���

���

���

���

���

���� ���� ���� ���� �����

�
�
�
��
��
�

�
�
�
�
�
��
��
�
�
�

���������������

��������
�������������������

����������������������

Figure 14: The noise created by accessing the L1 cache with
and without delay on the A8_A10 processor is significantly
different.

Instead of switching which cache to access, we tried injecting
a minimal delay before accessing the L1 cache by uncommenting
line 5 in Listing 1. When we delayed the cache access slightly, we
were able to reduce the noise, as shown in Figure 14. Clearly, there
is a significant affect on the frequency response of the device: con-
sistently a frequency shift of about 15 MHz. Injecting this minimal
single nop delay was able to trigger a significant response, where
the noise spike has moved more than a Bluetooth channel and most
LTE channels.

The main conclusion is that caches have a big impact in delay
andmisses in the L2 tend to have a higher impact at lower frequency
bands. Although this has potential to be a good technique, the rest
of the paper does not trigger cache delays or misses in the DEMIS
evaluation because we are constrained to measurements in real
systems, it is not clear how to introduce affect cache behavior at
runtime without RTL access.

5.4 Memory Impact on EMI
On the A11_PI2, modifying the DRAM speed was a simple matter
of modifying the BIOS parameters. We measured the EMI when the
processor was running nothing but the OS. As shown in Figure 15,
modifying the sdram_freq parameter in the config.txt file that
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Figure 15: By changing the SDRAM speed for the A11_PI2,
we were able to move the noisy peaks in frequency.

serves as boot settings for the A11_PI2 changes the frequency of
certain noisy spikes when idling.

These frequency spikes appear to be directly caused by memory
accesses because they occur at the DRAM frequency and at its
harmonics. When the DRAM frequency was shifted to 360 MHz,
we were able to see the spikes shift accordingly: from 400 MHz to
360 MHz, and from 800 MHz (first harmonic) to 720 MHz.

We measured the EMI produced by the A11_PI2 with the default
DRAM speed of 400 MHz as well as with a 10% slower speed of
360 MHz. This time, however, we took these measurements while
running the mcf and sjeng benchmarks. The results of these mea-
surements are presented in Figure 16. The libquantum benchmark
produced negligible EMI on the A11_PI2 processor, so the results
are omitted.
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Figure 16: When running the mcf and sjeng benchmarks on
the A11_PI2, changing the DRAM speed as little as 10% has
a significant impact on EMI.

Reducing the DRAM decreases noise by 3 dB in the SuperWiFi
600 band, but adds a spike in the SuperWiFi XR7 band for the mcf
benchmark. However, the default settings have less noise in the
SuperWiFi XR7 band and more noise in the SuperWiFi 600 band for

the same benchmark, so depending on what type of WiFi is being
used, different DRAM speeds are better for this application.

Similar effects can be seen for the sjeng benchmark as well. For
example, the default DRAM speed is better for the SuperWiFi XR7
and worse for the LTE 700 frequency bands than the slower DRAM
speed.

The main conclusion is that DDR creates big spikes in noise.
Even when the processor is idle there are big spikes because the
DDR clock is kept running. If the band in use is affected by DDR,
the only solution is to shift the DDR operating frequency. For the
analyzed cases, small 10% DDR frequency change is enough to move
the spikes out of most bands. For many benchmarks like sjeng, this
has no performance impact but some benchmarks like mcf are very
sensitive resulting in a 10% performance impact.

The DDR clock is one of the strongest EMI spikes, even stronger
than the processor clock. The reason is that processor clocks have
a more effective modulated clock signal. Future DDR designs may
want to consider a better clock modulation requirement.

5.5 Execution Core Impact on EMI
As we saw in Figure 10, even the same benchmark has different
EMI when run on different processors. Therefore, we launched a
more specific investigation on the impact the execution core itself
has on EMI.

1 int main () {
2 int total = 0;
3 for(int k=0;k <10000;k++) {
4 for(int i=1;i <10000;i++) {
5 total += k/i;
6 //asm("nop");
7 }
8

9 }
10 printf("total=%d\n",total);
11 }

Listing 2: Function for testing computation heavy code. This
code was used for testing the FPU by changing all data types
from int to float. Delayswere added by uncommenting line
6, and adding as many nops as desired.

In order to test the noise generated from using the FPU, we
performed multiple divisions, once using the int data type and
once using the float data type. The source code for the benchmark
used is in Listing 2 in the A8_A10 hardware.
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Figure 17: When utilizing the FPU as opposed to doing sim-
ply integer calculations on the A8_A10 processor, there was
much less RF interference. Furthermore, different frequen-
cies were affected differently.
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Figure 18: RFnoise createdwhenperforming integer calcula-
tions on the A8_A10 processor. The frequency response dif-
fers with the addition of a single nop in the loop.
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Figure 19: RF noise created when performing floating-point
operations on the A8_A10 processor. The frequency re-
sponse differs with the addition of a single nop in the loop.

We noticed a substantial difference in EM radiation between the
two test cases on the A8_A10 as in Figure 17. Not only did the noise
decrease, but we also observed that the lower frequencies tended to
exhibit a more consistent noise during floating-point calculations,
whereas higher frequencies observed consistently more noise from
integer-only calculations.

By injecting even a single nop into the calculations (uncomment-
ing line 6 in Listing 2), we were able to observe a distinct difference
between frequency responses for both integer calculations and
floating point calculations as seen in Figure 18.

As the noise generated from the integer calculations exhibited
frequent changes in power in each frequency, it is easy to determine
that the power spikes undergo a frequency shift when one nop is
injected into the code. Furthermore, the frequency spikes tend to
have less power in the benchmark with a delay by almost 7 dB
in the lower bands and 5 dB at higher frequencies. The measured
power is presented in Figure 18.

Figure 19 shows the difference in frequency responses when
running the floating point benchmark with and without a nop
delay. As opposed to the integer calculations, the floating point
calculations have wide-band low-frequency noise. However, by
injecting a nop into the inner for loop, we were able to move the
noise to different frequencies.

Figure 20 shows the radiated power from theA53_C2 andA53_K620
processors when running the three benchmarks without changing
any of the default settings on the boards. The benchmarks were
compiled without any optimizations. It is clear in these two figures
that each benchmark yields a distinct radiation spectrum on each
processor. Also, the benchmarks tend to behave similarly across pro-
cessors. As the processors all run at different frequencies, we expect
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Figure 20: When running the different benchmarks on
the A53_C2, and A53_K620 processors, the EMI being pro-
duced varied noticeably. A53_C2 and A53_K620 are fabri-
cated from the same RTL.
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Figure 21: When using the A15_XU4, the EMI varied signifi-
cantly across benchmarks. However, no significant EMI was
produced above 600MHz, and therefore is irrelevant tomost
wireless technology frequencies.

some variations, but in general it is clear that specific architectural
components produce distinct noise patterns.

It is important to note that the A53_C2 and the A53_K620 proces-
sors are fabricated from the same RTL in the same fab and process
node. Therefore, it is surprising that the EMI is so different between
the two processors.

Additionally, on the A53_C2 processor, the libquantum bench-
mark produces less noise than sjeng, but on they are switched
on the A53_K620 processor. We found this to be quite common
throughout our investigation.

We were also able to measure these benchmarks on an out of
order (OoO) processor, the A15_XU4 which features four OoO
cores and four in-order cores. The results are provided in Figure 21.
Interestingly enough, the OoO core appears to only emit noticeable
radiation in frequencies less than 600 MHz, which is below most
wireless communication bands. However, running the libquantum
benchmark introduces multiple 10 dB spikes into the LTE 450 band,
which could cause significant connectivity degradation.
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The main conclusion is cores have a high impact in processor
noise, with some cores like the A15_XU4 having less noise at higher
frequencies. The high power blocks like the FPU can produce inter-
ference but adding delays which sort of behaves like a frequency
modulation of the FPU changes the noise level. Even the same RTL
(A53) has a very different behavior in absolute and relative terms
between applications. This means that other factors besides archi-
tecture can have a big impact, but as show small core fluctuations
can compensate for the noise.

5.6 Further Insights
In addition to the hardware described in Table 1, some experiments
were also performed on a MYiR z-turn Board, running Ubuntu on a
Xilinx ZYNQ chip that includes an FPGA on chip. Unfortunately,
the measurements were all too noisy to provide usable results, as
the processing noise was overpowered by noise that we believe
was generated by the FPGA itself. However, we were able to note
that when starting and ending a process, all frequencies measured
experienced a significant increase in noise (more than 30 dB). We
hypothesize that this noise may have been caused by components
being powered on or off during that time.

6 DEMIS EVALUATION
While previous sections have provided insights, this section evalu-
ates a DEMIS approach. In this section, we evaluate the efficacy of
the techniques proposed in Section 5 using the same hardware run-
ning SPEC2006 benchmarks. Once again, we utilized the hardware
described in Table 1 and performed measurements using the same
N9342C Handheld Spectrum Analyzer from Agilent Technologies
and Keysight Technologies’ Near Field Probe Set.

We propose utilizing the techniques in Section 3.4 for a DEMIS-
enabled core to mitigate the EMI from the processor during exe-
cution. As shown in Figure 2, a DEMIS processor will be able to
monitor its own EMI, and when the in-band interference exceeds a
certain threshold, will switch to another processing configuration.
Because DEMIS is only useful for devices with wireless communica-
tion, we suggest using the existing antenna on the device to monitor
the EMI, leveraging the data from the modem to determine when
the processor is generating significant interference. However, the
purpose of this paper is to show that using computer architectural
techniques is effective in mitigating in-band EMI, and therefore de-
signing and implementing this fully DEMIS-enabled core is beyond
the scope of this work.

To evaluate DEMIS, we run all the different compile options,
core, and DDR frequencies. We evaluate the effectiveness for each
of the 5 analyzed bands (LTE 800, LTE 700, LTE 450, WiFi XR7
and WiFi 600). For the baseline, we pick the compile option and
frequencies with the highest performance. For the DEMIS solution,
we pick the configuration with the highest noise reduction as long
as it that does not have more than 10% slowdown. To illustrate the
selection process, Figure 22 shows all the options for just the LTE
800 band in an Exynos A15 core. Each bar shows the noise level.
For the baseline and hmmer run, the fastest (speed not shown on
the plot) is the configuration with default CPU speeds and using
the O2 compilation option with the default scheduling algorithm.
The lowest EMI with less than 10% slowdown is the configuration
with the CPUs running with a 5% slowdown and using the O3 opti-
mization. While the first configuration is selected for the baseline
hmmer point, the second configuration is selected for the DEMIS
hmmer point.
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Figure 22: Noise for all the configurations in the LTE 800
band with the A15_XU4 core.
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Figure 23: DEMIS has a significant EMI reduction across all
the bands on the A15_XU4.

We apply this process over all the bands. The result is shown in
Figure 23. This plot summarizes the main results with a 6% average
EMI reduction, with an average of only 5.5% performance reduction

While the main results only show data for the A15 core, we
performed the same process on all the platforms. Due to submission
space constraints of 11 pages we can not add the other cores, but if
another page can be added we will add these plots. Different cores
have different benefits, the A11_PI2 has an average noise reduction
of 6.5% across the five bands analyzed with the highest reduction
being in the SuperWiFi XR7 band with a 8dB reduction. This is
done with less than 10% slowdown.

The main conclusion is that DEMIS provides opportunities to
reduce noise across the different frequency bands. Doing architec-
tural and frequency changes we have been able to measure EMI
reductions from 3 to over 8dB across multiple platforms. We do so
capping the maximum slowdown under 10% with a modest average
of 6% across SPEC2006 applications. We think that these results
open a new opportunity to dynamically manage EMI.

7 CONCLUSIONS
In this paper, we introduce to the computer architecture community
the wireless communications challenge of EMI, and the opportuni-
ties for applying architectural techniques to address this challenge
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in a novel, dynamic solution. We propose DEMIS, utilizing architec-
tural and/or compilation changes in order to dynamically reduce
or shift in-band EMI.

We offer insights into multiple different architectural parameters,
and investigate their effect on EMI. Of the multiple parameters
we studied, cache access schemes, clock speed, and small process
delays had little impact on processor efficiency. However, small
dynamic changes of these produced a significant reduction of in-
band interference. These observations were expanded to include
more system-level techniques for reducing in-band EMI such as
changing compilation options.

Section 5 shows techniques that can be applied in current systems
like compiler options or frequency parameters, but it also points to
opportunities with the creating of synthetic benchmarks pointing
to further opportunities.

DEMIS is our architectural solution, described and evaluated
in Section 6, that integrates the dynamic manipulation of these
parameters to reduce the interference in the frequency bands used
by cellular, WiFi and Bluetooth communication technologies. Our
results show that our 15 dB EMI reduction for LTE can represent
over 3x bandwidth improvement for EMI bound communication.

This work shows that more research on RF interference emitted
by processors with on-chip FPGAs and out of order processors
should be conducted. Additionally, current wireless standards take
into account a small amount of noise. Therefore, improving the
SNR as we do using DEMIS would open up opportunities for im-
proved bandwidth, as these standards would be able to take into
account higher maximum throughput as the EMI decreases. Further-
more, we would like to look into dynamically switching between
binaries of the same code (with different compilation arguments)
during runtime, and if it would be a feasible solution for mitigating
in-band EMI as a program enters noisy phases. Another option
would be to investigate switching from one core to another as a
program executes and see the effects on the EMI. Finally, DRAM
clock modulation and introducing a time delay between two cores
are interesting prospects that we were unable to fully test at this
time due to lack of resources. Despite these constraints, the find-
ings we were able to make based on purely architectural techniques
show significant promise in improving wireless communications.
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