
A Framework for Dynamic Energy Efficiency
and Temperature Management

�

Michael Huang
�
, Jose Renau

�
, Seung-Moon Yoo

�
, andJosep Torrellas

�

Department of Computer Science
�

Department of Electrical and Computer Engineering
�

University of Illinois at Urbana-Champaign
http://iacoma.cs.uiuc.edu

ABSTRACT
While technology is delivering increasingly sophisticated and
powerful chip designs, it is also imposing alarmingly high en-
ergy requirements on the chips. One way to address this prob-
lem is to manage the energy dynamically. Unfortunately, cur-
rent dynamic schemes for energy management are relatively
limited. In addition, they manage energy either for energy
efficiency or for temperature control, but not for both simul-
taneously.

In this paper, we design and evaluate for the first time an
energy-management framework that tackles both energy effi-
ciency and temperature control in a unified manner. We call
this general approach Dynamic Energy Efficiency and Tem-
perature Management (DEETM). Our framework combines
many energy-management techniques and can activate them
individually or in groups in a fine-grained manner according
to a given policy. The goal of the framework is two-fold:
maximize energy savings without extending application ex-
ecution time beyond a given tolerable limit, and guarantee
that the temperature remains below a given limit while mini-
mizing any resulting slowdown. The framework successfully
meets these goals. For example, it delivers a 40% energy re-
duction with only a 10% application slowdown.

1 INTRODUCTION
Continuous technical advances are fueling the trend toward
more sophisticated and powerful chip designs. Such designs,
including high-end microprocessors, chip multiprocessors,
systems on a chip, and other advanced embedded systems are
quickly increasing their functionality and clock rates. Unfor-
tunately, they are also increasing their energy consumption
requirements alarmingly.

One way to address this problem is to manage the energy
consumed in the chips. There are two main aims of energy
management: to ensure that the energy is used efficiently and
to guarantee that power consumption is never so high that the
chip reaches dangerous temperature levels.

Efficient energy use is desirable in all systems. However,
it is critical in portable devices, where battery energy is lim-
ited. It is also an important way to reduce cost in systems
that have periods of idle time, also called slack [25]. Slack
appears not only in interactive and real-time systems; it also
�
This work was supported in part by the National Science Foundation

under grants NSF Young Investigator Award MIP-9457436, MIP-9619351,
and CCR-9970488, DARPA Contract DABT63-95-C-0097, and gifts from
IBM and Intel.

occurs in general-purpose environments like web servers or
routers with high-end processors where the performance is
often bottlenecked by the network.

Likewise, curbing high power consumption to limit high
temperatures is useful in all systems. It enables lower-cost
packaging and cooling systems for the chips. It also makes
the chip more reliable. Finally, it may enable a more aggres-
sive design or a higher clock speed.

To address these two issues, namely energy efficiency
and temperature control, many low-power architectural tech-
niques have been proposed and implemented. For example,
they include putting the system in sleep mode [28]; scaling
the voltage and/or frequency [11, 13, 25]; switching con-
texts to a job that consumes less power [27]; reconfiguring
hardware structures [1]; gating pipeline signals, for exam-
ple to control speculation [5, 23]; throttling the instruction
cache [28]; clock optimizations, including multiple clocks
and clock gating [10]; better signal encoding [10]; low power
memory design techniques [15] like bank partitioning or di-
vided word line; low power cache design techniques like
cache block buffering [33], sub-banking [9, 30], or filter
caches [20]; and TLB optimizations [17].

While most of these techniques are likely to be useful for
the upcoming, energy-consuming chips, we feel that their ef-
fectiveness can be enhanced. To start with, while some of
these techniques have been used adaptively [1, 8, 5, 23, 25,
27], many others have been designed to be always active. In
reality, for many of the latter, it would be advantageous to
turn them on and off dynamically, based on the requirements
of the application and the environmental conditions. They
could enable useful energy-performance tradeoffs.

In addition, most of these techniques were proposed to
work independently of each other. If we combined many of
them in a single framework that can activate and deactivate
them individually or in groups according to a given policy,
the resulting system could be both more powerful and more
flexible.

Finally, proposed dynamic approaches have targeted either
energy efficiency [1, 8, 23, 25] or temperature control [5, 27]
but not both simultaneously. If a multi-technique framework
can combine support for both aspects, it can become a fairly
complete approach to energy management.

The general approach of dynamically managing energy
for both energy efficiency and temperature control we call
Dynamic Energy Efficiency and Temperature Management
(DEETM). The contribution of this paper is the design and
evaluation for the first time of one such DEETM frame-
work. Our framework supports a combination of energy-
management techniques. It is implemented with a combina-
tion of software and hardware for fine-grained energy man-
agement. The framework has two goals: (i) maximize the

1

savings of energy in the chip without extending the execution
time of the application beyond a given tolerable limit, and (ii)
guarantee that the temperature of the chip remains below a
given limit while minimizing any resulting slowdown. In our
evaluation, we show that the framework satisfies these goals.
For example, it delivers a 40% energy reduction with only a
10% application slowdown.

This paper is organized as follows: Section 2 presents the
design and implementation of our framework for DEETM;
Section 3 discusses how we evaluate it; Section 4 evaluates
the framework; and Section 5 presents related work.

2 A FRAMEWORK FOR DEETM
In this section, we describe our framework for DEETM: its
main ideas (Section 2.1), the algorithm used (Section 2.2),
the software interface (Section 2.3), some related issues (Sec-
tion 2.4), and the techniques included in the framework (Sec-
tion 2.5).

2.1 Main Ideas
Advanced chips can benefit from a dynamic framework that
manages energy in a fine-grained manner to accomplish two
goals. The first one istemperature control: guaranteeing that
the temperature of the chip remains below a given limit while
minimizing any slowdown. The second goal isenergy effi-
ciency control: maximizing the savings of energy in the chip
without extending the execution of the application beyond a
tolerable limit.

For the framework to be versatile, it should include multi-
ple techniques for energy management. Different techniques
may target the energy consumption in different components
of the chip, for example processor cores, I-caches, D-caches,
or DRAM arrays. They may, instead, target the same compo-
nent but do so with a different energy-performance tradeoff.
In such an environment, the framework can dynamically acti-
vate the techniques individually, concurrently, gradually with
a priority order, or even in a mutually exclusive manner.

As initial support for the framework, we assume that the
chip contains a distributed thermal sensor along the lines
of the PowerPC [28] and a counter with the number of in-
structions executed. In addition, it contains two registers,
MaxTempandMaxSlowdn, which are set in software with the
maximum temperature allowed and the maximum job slow-
down that can be tolerated, respectively.

2.2 Algorithm Description
Our framework includes two algorithms: a temperature-
limiting one calledThermaland an energy-saving one called
Slack. They try to satisfy the first and second goals discussed
above, respectively. These algorithms control the activation
of a set of energy-management techniques.

At any given time, the set of techniques that are active is
called theCurrent Set. These techniques may have been se-
lected by the Thermal or by the Slack algorithm. The set
of techniques that are selected by the Thermal algorithm is
called theThermal Set.

The two algorithms work as follows. When the Thermal
algorithm runs, it compares the current temperature to the
temperature limit. Depending on the result, it may add or
subtract one technique to or from the Thermal Set. When the
Slack algorithm runs, it first deactivates the Current Set to
measure the baseline IPC value of the application. Then, it
activates the Thermal Set and possibly additional techniques

until the new IPC shows that the tolerable slack is used up.

To adapt to changing conditions, these algorithms run peri-
odically. The period between runs we callMacrocycle. Since
the two algorithms do not need to have the same period, we
define a thermal macrocycle and a slack macrocycle (Fig-
ure 1-(a)).

The thermal macrocycle should be set roughly to the time
taken by the thermal sensor to detect a change in temperature
after a technique is activated. Since heat transfer occurs at
the ms level [31], the thermal macrocycle has to be of the or-
der of a few ms, possibly 1-15 ms. If the macrocycle is too
short, the Thermal algorithm will overreact, since there isnot
enough time to feel the effect of any newly activated tech-
nique. However, if it is too long, we risk damaging the chip
with a temperature that is over the limit for too long. The ap-
propriate length of the macrocycle is different in each system.
It depends on the heat dissipation characteristics of the chip
and the sophistication of the distributed thermal sensor.

Selecting the slack macrocycle is not as delicate. However,
since the Slack algorithm decides what fraction of the time
to activate each technique for, based solely on the IPC at the
beginning of the macrocycle, we need to pay attention to two
issues. First, the macrocycle should be short enough not to
miss significant changes in application behavior. Otherwise,
the resulting slowdown may be very different than initially
expected. In practice, a macrocycle of the order of a few ms,
possibly 1-15 ms, is appropriate.

The second issue is that slack macrocycles should all have
the same duration and not be cut off short. The reason is
that, when the Slack algorithm runs, its calculations use the
expected duration of the macrocycle to decide the length of
time to activate each technique for. Cutting the macrocycle
short makes such calculations inaccurate. We will see later
how we address this issue.

In the following, we describe the two algorithms in detail.
Note that both algorithms want to deliver large energy reduc-
tions without excessive slowdowns. Consequently, they pre-
fer techniques that minimize the product of the energy con-
sumed by the application times the execution time (energy-
delay product[10]). As a result, both algorithms pick the
techniques to activate in the same order. Such order followsa
ranking set up by the OS or application based on the expected
energy-delay product impact of each technique.

Thermal Algorithm
The Thermal algorithm is typically implemented as an in-

terrupt handler in the OS. Alternatively, it could be imple-
mented in hardware. The algorithm is shown in Figure 1-
(b). If the thermal sensor indicates a temperature higher than
MaxTemp, the next highest-priority technique not yet in the
Thermal Set is added to it. Otherwise, if it indicates a temper-
ature lower than a low-threshold valueMinTemp, the lowest-
priority technique in the Thermal Set is removed.

If we have added a new technique to the Thermal Set, be-
fore leaving the algorithm, we set the Current Set to the max-
imum of Current and Thermal Sets. This is done to ensure
that the new technique is immediately active. If a technique
was removed from the Thermal Set, however, it cannot be
removed from the Current Set until the Slack algorithm runs.

MinTempis set to minimize instability. A sophisticated de-
sign can keep a differentMinTempfor each of the techniques.
To choose the appropriateMinTempfor a given technique,
we can use past profiles to estimate the temperature reduction
that the technique delivers under usual conditions. Then, we
setMinTempto slightly less thanMaxTempminus the average
value of such a temperature reduction. With this approach,

2

Thermal Macrocycle O(ms)

Time

Thermal Algorithm

Slack Algorithm

Slack Macrocycle O(ms)

(a) Timing Diagram

µMicrocycles O(s)

Sleep while Temp > EndCrisisTemp

Temp > CrisisTemp ?

Yes

MaxSlowdn = 0 ?

CurrentSet = 0

Measure Stable

Baseline IPC

CurrentSet = ThermalSet

Effective IPC is Higher ?

Measure Stable

Effective IPC

Slowdown > MaxSlowdn ? CurrentSet += Technique
CurrentSet -= %LastTechnique

if not in ThermalSet
Yes No

No

Yes

No

Yes

CurrentSet = ThermalSet

(d) Slack Algorithm(c) Thermal Crisis Support

Temp > MaxTemp ?

Temp < MinTemp ?

ThermalSet += Technique

ThermalSet -= Technique

No

Yes

No

Yes

CurrentSet = Max(CurrentSet,ThermalSet)

(b) Thermal Algorithm

No

Figure 1:Algorithms used in our framework.

we minimize the chances that the deactivation of a technique
brings us back to overMaxTemp.

Note that, in some cases, we may not be able to prevent the
temperature from rising over the limit. For example, such a
situation may be caused by a virus. For this reason, the chip
must include support for a thermal crisis. One possible such
support is shown in Figure 1-(c): if the temperature reaches
a CrisisTemptemperature, the hardware unconditionally sets
the system to sleep until the temperature is safely lower than
CrisisTemp.

Slack Algorithm
The Slack algorithm is implemented in hardware instead of

as an OS routine. The reason is that, every time that it runs,
it needs to repeatedly measure the number of instructions ex-
ecuted by the application at�s-level intervals. After several
such measurements in the background, the algorithm makes
the decision. These intervals we callMicrocycles(Figure 1-
(a)). We will see that, for higher accuracy, a microcycle is of
the order of a few�s.

The Slack algorithm is shown in Figure 1-(d). If no slow-
down can be tolerated, the Current Set is simply set to the
Thermal Set. Otherwise, the Current Set is deactivated so that
the hardware can measure the stable baseline IPC of the appli-
cation. To compute the IPC, the hardware reads at microcycle
intervals the counter of instructions executed. It may takesev-
eral readings until a reasonably stable IPC is obtained. Note
that by deactivating all techniques for several�s we do not
risk a dangerous temperature surge because the time is too
short.

We then set the Current Set to the Thermal Set and, to find
out the resulting slowdown, calculate the neweffectiveIPC.
The new effective IPC is the new measured IPC plus a cor-
rection if the Thermal Set includes techniques that change
the clock frequency.

With this new effective IPC, we can compare the slowdown
caused by setting the Current Set to the Thermal one, to the
maximum tolerable slowdown (MaxSlowdn). If MaxSlowdn
is higher, we augment the Current Set with the next highest-
priority technique not yet in it and again measure the effec-
tive IPC. This process is repeated until the application slow-
down is equal to or higher thanMaxSlowdn. If the slowdown
is higher thanMaxSlowdn, the last technique that has been
added to the Current Set is marked as active for only a frac-
tion of the Slack macrocycle, such that the final slowdown
ends up being no higher thanMaxSlowdn. The only excep-
tion is when this last technique added belongs to the Thermal
Set, in which case, it cannot be deactivated. Finally, when we
reach this point, the algorithm exits.

Every time that we go through the loop of adding a new
technique to the Current Set, the hardware may need to take
several measurements spaced one microcycle apart, until a
stable IPC is obtained. Unfortunately, it is possible that,at
the same time, the application also goes through a change in
its regime that induces a change in IPC. In this case, to avoid
confusing our algorithm, we proceed as follows. If the ef-
fective IPC suddenly becomes higher after activating a tech-
nique, it is clear that the regime changed. If we pressed on
with more techniques until we reached the original target IPC,
we would be slowing down the application beyond the toler-
able limit. Consequently, as shown in Figure 1-(d), we stop
the algorithm and restart it from the beginning.

If, instead, the regime change is in the opposite direction,
our algorithm will not notice it: we will assume that the tech-
nique just activated is solely responsible for the large IPCre-
duction. However, this is fine. Our algorithm will end up
producing a conservative solution: in the final system, the
true slowdown relative to the baseline execution will be less
than it could be tolerated. Consequently, the end user is not
negatively affected.

3

Note that some of the techniques used may have non-trivial
activation delays. Such is the case, for example, for voltage-
frequency scaling, which takes 10-20�s to activate or deac-
tivate [11]. Such delays, however, are negligible compared
to the duration of a macrocycle. For example, if a slack
macrocycle takes 2 ms, activating and deactivating voltage-
frequency scaling takes only about 2% of the macrocycle.
Furthermore, because the impact of voltage-frequency scal-
ing on the IPC is fairly predictable, we do not need to deac-
tivate it at every beginning of a macrocycle to estimate the
baseline IPC. This fact further reduces overhead.

Finally, since both the Thermal and the Slack algorithms
may update the Current Set, we need to prevent inconsisten-
cies. To this end, and also to ensure that slack macrocycles
are not cut off short, we propose the following timing (Fig-
ure 1-(a)). We choose the slack macrocycle so that a thermal
one contains several slack macrocycles plus a few�s. After
the OS has executed the Thermal algorithm and is about to re-
turn execution to user mode, it sets the hardware to trigger the
next run of the Slack algorithm in a few�s. We set this delay
so that, when the Slack algorithm finally runs, it finds the user
application in a warmed-up state. From then on, the Slack al-
gorithm runs periodically, always in the background. Finally,
when an interrupt triggers the Thermal algorithm again, the
first action of the OS is to temporarily disable the hardware
that triggers the Slack algorithm. If it so happens that the
Slack algorithm was running at the time, this action stops it
and automatically sets the Current Set to the Thermal Set.

2.3 Software Interface
TheMaxTempandMaxSlowdnregisters presented above are
part of our framework’s software interface. In addition, for
each energy-management technique, the interface containsa
register with the relative priority of activation of the tech-
nique (Figure 2). All registers are set by the OS, although
MaxSlowdncan also be set by the application. With this sup-
port, our algorithms can decide what techniques to include at
any time in the Current Set.

IN

IN / OUT

MaxTemp

MaxSlowdn

Priority

Technique 1

Technique 2

Technique 3

Technique n

% of Slack
Macrocycle Time

Figure 2:Software interface of our framework.

However, the OS should also have a means to directly over-
write the decisions taken by our default algorithms. This ca-
pability can be useful when the OS has specific information
on the performance or energy characteristics of the applica-
tion that is running. Such information may be available from
a profile of the application.

One way to extend the interface is to allow the OS to over-
write the decisions of the algorithms as shown in Figure 2.
We add one input/output register for each technique in the
framework. For a given technique, the register indicates the
fraction of the slack macrocycle for which the technique is
activated. While these registers are automatically set by the
Slack algorithm as it adds techniques to the Current Set, they
can also be overwritten by the OS.

2.4 Related Issues
Two important related issues are whether to implement the al-
gorithms in hardware or in software, and whether to make the
decisions in a centralized or distributed manner in the chip.
We consider these issues next.

2.4.1 Hardware vs Software Implementation

The Thermal algorithm is implemented as an OS interrupt
handler. While the Slack algorithm could also be imple-
mented in software, we choose to implement it in hardware.
This is in contrast to related algorithms proposed in the liter-
ature that exploit system idleness in software [4, 25].

A software implementation of the Slack algorithm would
certainly be sufficient if we restricted our work to a certain
class of energy-management techniques or to a certain class
of applications. Specifically, suppose that we restricted our
techniques to those that induce predictable slowdowns like
voltage-frequency scaling. In this case, the OS can simply
activate the technique for the time duration that will induce
the desired slowdown.

Likewise, software might be enough if we restricted the
applications to those that, by repeating certain high-level op-
erations, easily tell how fast they are executing. For exam-
ple, consider video streaming applications. Their speed can
be easily monitored by recording the number of frames per
unit of time that are being processed. It is easy for the OS
to know what is the slowdown caused by a certain energy-
management technique by simply checking the new frame
rate. There is no need to measure the IPC.

However, we want our Slack algorithm to deliver accurate
solutions for all classes of techniques and applications. To
see why it requires a hardware implementation, recall that the
Slack algorithm repeatedly measures the IPC of the applica-
tion. While software can support measurements at ms-level
intervals, only a hardware solution can support measurements
at�s-level intervals. In practice, we need a hardware solution
only if the behavior of the application changes significantly at
ms-level intervals while staying relatively uniform at�s-level
intervals.

We have evidence that�s-level measurements are benefi-
cial in our applications. To understand why, consider a loop.
In general, IPC measurements at�s-level intervals will yield
fairly uniform values, irrespective of the duration of the loop,
as long as 1�s includes a few iterations. However, IPC mea-
surements at ms-level intervals will yield uniform values only
if the loop lasts for many ms. In our applications, much of the
code appears to exhibit more uniformity at�s-level intervals
than at ms-level intervals. Consequently, we set the interval
between measurements (microcycle) to a few�s and, there-
fore, implement the Slack algorithm in hardware.

2.4.2 Distribution vs Centralization

We now consider how to apply our framework to chips with
multiple processor cores. Ideally, we would like to run the
framework in a distributed manner. Each processor would
have its own framework, running algorithms that read local
sensors and make decisions on what techniques to activate
locally. This approach is appealing because, potentially,each
processor may be running a very different application.

In practice, while some energy-management techniques
like those that modify the cache hierarchy can be easily con-
trolled on a per-processor basis, other techniques are bestcon-
trolled for the whole chip. Consider, for example, voltage-
frequency scaling. Using a different voltage and frequency
in each processor neighborhood introduces complexity and
makes communication between the processors trickier.

4

One possible alternative is to use per-processor frame-
works to run the algorithms and then, after a global synchro-
nization step, make a global decision. However, such an ap-
proach is likely to suffer from synchronization overhead.

The approach that we take is to run the algorithm in a cen-
tralized manner. Signals from the different processor neigh-
borhoods bring information from the distributed sensors to
a central framework module. The module feeds the highest
temperature and the sum of all the instructions executed to a
centralized algorithm. While this approach requires a more
careful timing design, it simplifies the decision-making pro-
cess.

2.5 Energy Management Techniques
The different energy-management techniques in the frame-
work will target different components of the chip and impact
the energy, execution time (delay), and energy-delay product
of applications differently. In this section, we select a few,
representative techniques to include in the prototype frame-
work that will be evaluated in Section 4.

All the techniques that we select reduce the average power
consumption at the expense of slowing down the application.
However, while some techniques reduce the total energy con-
sumed in the application run, others do not. Consequently,
the techniques in the first group may or may not decrease the
energy-delay product, while those in the second group always
increase it.

Among the techniques in the first group, we include: sub-
banked data caches [9, 30], filter instruction caches [20],
voltage-frequency scaling [11, 13], and reduced memory
voltage [16]. In each of these cases, when the technique is
activated, the system goes from a default configuration to a
lower-energy, lower-performance one. These techniques can
be used for both the Thermal and Slack algorithms.

Among the techniques in the second group, we include
slowing down data cache hits and putting the processor to
light sleep. These techniques simply introduce extra delayto
reduce the average power. Due to their energy inefficiency,
we will try to keep them out of our Thermal and Slack algo-
rithms. However, they may contribute to the thermal crisis
support.

We now briefly describe these techniques, while a more
detailed description can be found in [36]. The values used for
their parameters are listed in Section 3.1. Our framework can
be easily extended to include other techniques.

Sub-Banked Data Cache
With cache sub-banking, a cache access activates only part

of the cache line selected instead of the whole line [9, 30]. To
support sub-banking, the cache is augmented with additional
decoding logic and transmission gates. When sub-banking
is not activated, this logic adds negligible delay to the cache
access time.

When sub-banking is activated, a cache access consumes
less energy. This is because the number of activated bit lines
and sense amplifiers is reduced. However, the presence of the
extra decoding logic and transmission gates tends to increase
the cache access time. Consequently, cache hits consume less
energy but are slower. The energy consumption and speed of
cache misses are unaffected.

Filter Instruction Cache
The on-chip I-memories that supply instructions to the pro-

cessors in an embedded chip are often designed with high-
performance SRAM to ensure that their latency is minimal.
They are also large, to hold the whole program. As a result,

each access to them, while fast, consumes significant energy.

To address this problem, a small I-cache can be placed be-
tween the I-memory and the processor. Accesses to this cache
are not faster in number of cycles than accesses to the already
fast I-memory. However, they consume much less energy. As
a result, this cache works somewhat like a filter cache [20].

If this filter cache is deactivated, all fetches go directly to
memory, enabling a fast yet energy-consuming system. If,
instead, the cache is activated, hits in the cache take the same
time but consume much less energy. Misses, however, force
the fetch to go to memory, adding up additional latency and
energy consumption. Overall, with the cache activated, the
system is likely to be slower but consume less energy.

An alternative design could be to eliminate the filter cache
and add sub-banking to the I-memory. In such a design, how-
ever, accesses to an I-memory sub-bank could suffer one ex-
tra cycle of latency. The result is likely to be a slower system
than the one with the filter cache.

Voltage-Frequency Scaling
Reducing both the voltage and the frequency of the chip

is a well-known technique [11, 13]. Dynamic energy is pro-
portional to the square of the supply voltage, while dynamic
power is proportional to the frequency and to the square of the
voltage. To apply this technique, we simply reduce linearly
the voltage and frequency of the whole chip to�����	and
��	. This change works for the linear section of the scaling
curve.

Reduced Memory Voltage
We lower the voltage of only the DRAM array to

������	. This can be done by changing the reference volt-
age used in an on-chip voltage converter according to the out-
puts of a detector [16]. Voltage changes have to be managed
carefully because they induce non-linear changes to transistor
characteristics. In this technique, to scale down other parame-
ters as we scale down the voltage, we use circuit simulations.
In addition, during the low-power mode, we also change the
DRAM refresh intervals. The procedure that we use is out-
lined in [36].

Slowing Down Data Cache Hits
This technique progressively reduces the number of out-

standing data loads and stores that a processor can have and,
later, increases the latency of cache hits. More specifically,
the number of allowed outstanding accesses is progressively
halved. Once we reach 1 load and 1 store, we progressively
increase the cache hit latency one cycle at a time. When this
technique is to be deactivated, we undo these changes in re-
verse order.

Light Sleep Mode
In this technique, we put the processor in a light sleep mode

for a period of time. We do not turn off the PLL, clock distri-
bution, or DLLs to minimize any wake-up penalty. We sim-
ply gate the clock at the output of the DLLs. Since, by de-
fault, we were already clock-gating all the units not used, this
technique cannot save much energy. In fact, because we are
keeping the PLL, DLLs, and clock distribution lines on while
slowing down the application, this technique ends up increas-
ing the energy consumed. However, it reduces the average
power consumed in the system.

3 EVALUATION ENVIRONMENT
We evaluate an implementation of our adaptive framework
on top of an advanced chip with multiple superscalar cores
and DRAM banks. We use detailed software simulations at
the architectural level. The simulations are performed using

5

SRAM

I-Mem
Row Dec Row Dec Row Dec Row Dec

D
-C

ach
e

Sub-

Bank

Sub-

Bank

 � � � � �� � � � �� � � � �� �
� � �� � � � � �� � � � �� �� �� � D-CacheI-Cache

� � �� �
(c)(b)

DB

Processor

Bank
DRAM

RBRBRBRBRB

DB

Data Bus

(a)

DRAM Bank

Processor+Cache Hierarchy

Figure 3:Chip architecture modeled: overview of the chip (a), per-processor memory hierarchy (b), and per-processor
DRAM bank organization (c). In the charts,RB, DB, andRow Decstand for row buffer, data buffer, and row decoder,
respectively.

Processor D-Cache I-Cache I-Memory Data Buffer Row Buffer DRAM Sub-Bank

2-issue in-order at 800 MHz Size: 8 KB Size: 128 inst. Size: 8 KB Number: 1 Number: 5 Number: 4
BR Penalty: 2 cycles Assoc: 2 Assoc: 1 Line: 4 inst. Size: 256 b Size: 1 KB Num Cols: 4096
Int,Ld/St,FP Units: 2,1,0 Line: 32 B Line: 4 inst. RTrip: 1.25 ns Bus: 256 b Bus: 256 b Num Rows: 512
Pending Ld,St: 2,2 RTrip: 1.25 ns RTrip: 1.25 ns RTrip: 3.75 ns RTrip: 7.5 ns RTrip: 15 ns

Table 1: Parameters for a single memory bank and processor pair. In the table,BR andRTrip stand for branch and
contention-free round-trip latency from the processor, respectively.

Technique Label Parameter Value

Sub-banked SubBank Cache hit if no sub-banking: RTrip = 1.25 ns, E = 222.8 pJ
data cache Cache hit if sub-banking: RTrip = 2.50 ns, E = 69.1 pJ
Filter IFilter I-mem access: RTrip = 1.25 ns, E/inst = 51.6 pJ
instruction I-cache hit: RTrip = 1.25 ns, E/inst = 15.4 pJ
cache I-cache miss + I-mem access: RTrip = 2.5 ns, E/inst = 67.0 pJ
Voltage-freq. scaling VoltFreq � !"#= 1.44 V,$!"#= 640 MHz, overhead of any scaling = 10%s
Reduced memory MemVolt � = 1.8 V: RB access (RTrip = 7.5 ns, E = 500.1 pJ), DRAM access (RTrip = 15 ns, E = 3702.2 pJ)
voltage � = 1.2 V: RB access (RTrip = 7.5 ns, E = 500.1 pJ), DRAM access (RTrip = 21.25 ns, E = 2634.6 pJ)
Slowing D-cache hits SloHit –
Light sleep mode Sleep –

Table 2:Values of the parameters used in our energy-management techniques. In the table,E, RB, andRTrip stand for
energy, row buffer, and contention-free round-trip latency from the processor, respectively.

a MINT-based [32] execution-driven simulation system [21]
that models all the components of the chip, including the
superscalar processors. The simulator includes energy con-
sumption models. In the following, we describe the archi-
tecture modeled, how we estimate the energy consumed, the
applications executed, and the metrics used.

3.1 Architecture Modeled
As an example of an advanced chip, we model a processor-in-
memory chip with 64 simple processors cycling at 800 MHz
and 64 Mbytes of DRAM. The target technology is IBM’s
0.18�m Blue Logic SA-27E ASIC [12] with some expected
improvements in DRAM density [36]. The default voltage is
1.8 V.

The chip is modeled after aFlexRAMchip [19]. Processors
are 2-issue wide and statically scheduled. Each processor is
associated with a 1-Mbyte DRAM bank. A processor can di-
rectly access its own DRAM bank as well as the DRAM of
its left and right neighbors. Such support allows communi-
cation between the processors, effectively connecting them in
a ring. In addition, as inFlexRAM, the chip contains an on-
chip controller that executes the serial sections of the applica-
tion, including initialization, broadcast, and reductionopera-
tions [19]. The controller’s contribution to the executionof
our applications constitutes on average only 8% of the time,
and is mostly limited to the initialization and ending partsof
the application. For these reasons and because most chip re-
sources are very underutilized when the controller runs, we
do not include the controller’s contribution in our evaluation.

Figure 3 shows the architecture of the chip. In the fig-
ure, Chart (a) gives an overview of the chip, while Chart (b)
shows the memory hierarchy of each processor in the chip
and Chart (c) shows the organization of each DRAM bank
into sub-banks. Table 1 shows the most important architec-
tural parameters for a single memory bank and processor pair.

Table 2 shows the values for the parameters of the energy-
management techniques included in our framework. The en-
ergy values used will be justified in the next section. The
values of some other framework parameters are as follows.
Changing the memory voltage withMemVolt is assumed to
have negligible overheard. Both the thermal and the slack
macrocycles are set to 1 ms, while the microcycle is set to 1
�s. To avoid instability in the Thermal algorithm, we set a dif-
ferentMinTempfor each technique, as shown in Section 3.4.
Finally, every time that we execute the Thermal algorithm,
we charge 200 cycles to account for the overhead of the exe-
cution in the OS.

3.2 Estimating the Energy Consumed
To estimate the energy consumed in the chip, we have applied
scaling-down theory to data on existing devices reported in
the literature, as well as used several techniques and formu-
las reported in the literature [3, 30, 18, 24, 34, 35]. A detailed
discussion of the methods that we have followed can be found
in [36]. In this section, we give an overview of how we es-
timate the energy consumed in the processor cores, memory
hierarchies, and clocks. We also discuss how we validated the
models.

6

Processor Cores
Each core is a 32-bit 2-issue processor with a DLX-like

pipeline. It supports a simplified version of the MIPS ISA
with only 28 16-bit instructions [19]. We take the data
from [35] and, by applying general scaling theory and con-
sidering technology trends, we estimate the average energy
consumed in the register file, branch unit, ALU, and the other
modules of the processor. Then, we can estimate the energy
consumed by each type of instruction by adding up the energy
of all the modules used by that particular instruction type.We
assume perfect clock gating inside the processor code. With
this approach, for example, we estimate that an add, a branch,
and a multiply instruction consume an average of 56.1, 34.8,
and 251.2 pJ, respectively.

Memory Hierarchies
To compute the energy consumed in the memory hierarchy,

we use popular models [30, 18]. We classify memory hierar-
chy accesses based on what level of the hierarchy they reach,
and depending on whether they are reads, writes, or dirty line
displacements. Then, we compute the average energy con-
sumed by one access of each class. This is done by dividing
the access into simple operations. For example, a read that
hits in the row buffer is divided into a cache tag check, a read
hit in the row buffer, and a line fill into the cache. Finally,
to compute the overall energy in the memory hierarchy, we
multiply the number of accesses of each class times the corre-
sponding energy per access in the class, and then accumulate
the contribution of all classes. As an example, Table 3 shows
the average energy consumed by a read and a write access to
different levels of the hierarchy.

Level of the Hierarchy Rd Energy (pJ) Wr Energy (pJ)

D-cache 222.8 246.3
I-mem (per instr) 51.6 56.8
Row buffer 500.1 2740.6
DRAM bank 3702.2 3286.2

Table 3:Average energy consumption per access.

Clocks & Other
The clocking system includes 1 main PLL and 16 dis-

tributed local DLLs [29]. The clock network is laid out in the
chip using an H-tree structure to minimize skew. To estimate
the overall energy of the clocking system, we estimate and
add the contributions of several components, namely PLL,
DLLs, buffers, and distribution lines. Such contributionsare
estimated based on [3] and on capacitance models. Overall,
the estimated average energy per cycle is 957.5 pJ. This figure
does not include the energy for the clock inside the processor
cores. The latter is included in the computation for the cores.
Further details can be found in [36].

Validation
We validate our energy estimates with several experiments.

We report on two of them here. In the first validation, we ex-
amine our cache model. We compare our energy estimates
to those generated with the CACTI v2 models [34]. Since
CACTI uses a relatively old sense amplifier model, we change
it to a more aggressive one. The comparison shows that
our estimates of energy consumption in the data cache and
CACTI’s are only 9% different [36].

In a second validation, we focus on the relative energy con-
sumption of the I-cache, D-cache, clock, and processor core.
Such a relative breakdown of energy for the Strong ARM pro-
cessor is available from [24]. We compute the corresponding
estimates for one of our processors plus its associated caches
and share of the clock. While there are some differences be-

tween the two architectures, getting a similar breakdown is
reassuring. The comparison shows that the contribution of
each of the components does not differ by more than an ab-
solute 6% between the two systems [36].

3.3 Applications Executed
For the experiments, we use 6 applications that are suitableto
the integer-based processor-in-memory chip considered: they
access a large memory size, are very parallel, and are integer
based. They come from several industrial sources. We have
parallelized each application into 64 threads by hand.

Table 4 lists the applications and their characteristics. They
include the domains of data mining, neural networks, protein
matching, multimedia, and image compression. Each appli-
cation runs for several billions of instructions. AppendixA
gives more information on each application.

3.4 Metrics Used
We characterize an application run with four metrics: perfor-
mance (measured with total execution time, also calledde-
lay), average power consumption, total energy consumption,
and product of energy times execution time (energy-delay
product [10]). We will strive for a low energy-delay prod-
uct, since it implies a good balance between high speed and
low energy consumption.

In some experiments, we need to estimate chip tempera-
ture. However, our models only use energy and power met-
rics. We currently do not have a thermal model that, taking
into account the chip package and cooling support, translates
sustained power dissipation into chip temperature.

It is known, however, that heat transfers occur at the ms
level [31]. As a result, it has been suggested to use the
average power dissipated over many cycles as a proxy for
temperature [5]. We follow this approach and use a metric
called&'()*+as a proxy for chip temperature. At a given
time,&'()*+is 0.75 times the average power consumed by
the chip in the last millisecond plus 0.25 times the value of
&'()*+a millisecond ago. While clearly not perfect, this re-
cursive definition tries to approximate the behavior of temper-
ature. Using this metric, the proxy forMinTempfor VoltFreq,
SubBank, and IFilter is set to 45%, 75%, and 78%, respec-
tively of the proxy forMaxTemp.

4 EVALUATING THE FRAMEWORK
To assess our DEETM framework, we evaluate three issues:
the management of multiple energy-management techniques
(Section 4.1), the Thermal algorithm (Section 4.2), and the
Slack algorithm (Section 4.3).

4.1 Technique Analysis & Comparison
Given a DEETM framework with multiple techniques, the
first question to ask is what combination of techniques should
it apply and in what order. We now answer this question for
our framework.

Comparing Individual Techniques
We start by comparing the individual techniques with the

following experiment for each application. We execute the
application without activating any technique and record the
average power dissipated&�,-. (last column of Table 4).
Then, for each technique, we perform four runs dynamically
activating the technique with different intensities. The inten-

7

Appl. What It Does Problem Size
D-Cache Average
Hit Rate Power(W)

GTree Data mining: tree generation 5 MB database, 77.9 K records, 29 attributes/record 0.507 10.2
DTree Data mining: tree deployment 1.5 MB database, 17.4 K records, 29 attributes/record 0.986 10.8
BSOM BSOM neural network 2 K entries, 104 dimensions, 2 iterations, 16-node network,832 KB database 0.947 15.5
BLAST BLAST protein matching 12.3 K sequences, 4.1 MB total, 1 query of 317 bytes 0.969 8.7
Mpeg MPEG-2 motion estimation 1 1024x256-pixel frame plus a reference frame. Total 512 KB 0.999 11.3
FIC Fractal image compressor 1 512x512-pixel image, 4 512x512-pixel internal data structure. Total 2 MB 0.978 6.1

Table 4:Applications executed.

0.6

0.7

0.8

0.9

1.0

1.1

0.5 0.6 0.7 0.8 0.9 1.0

N
or

m
al

iz
ed

 E
ne

rg
y

Normalized Average Power

IFilter
VoltFreq

SubBank
MemVolt

Sleep

(a)

1.00

1.05

1.10

1.15

1.20

1.25

1.30

1.35

1.40

0.50 0.60 0.70 0.80 0.90 1.00

N
or

m
al

iz
ed

 D
el

ay

Normalized Average Power

IFilter
VoltFreq

SubBank
MemVolt

Sleep

(b)

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

1.5

1.6

0.5 0.6 0.7 0.8 0.9 1.0

N
or

m
al

iz
ed

 E
ne

rg
y*

D
el

ay

Normalized Average Power

IFilter
VoltFreq

SubBank
MemVolt

Sleep

(c)

Figure 4: Impact of dynamically applying each individ-
ual energy-management technique: total energy consumed
by the applications (a), their execution time (b), and their
energy-delay product (c). The data is normalized to a run
with no active technique and then averaged out across all ap-
plications.

sity is regulated with a power threshold: if the power in the
last microcycle was over the threshold, the technique gets ac-
tivated; the technique is deactivated when the power in the
last microcycle was such that the technique could be deac-
tivated without going over the threshold again. We set the
thresholds to/012&�,-., /032&�,-., 3042&�,-., and3052&�,-.. Finally, we perform an experiment activating
the technique for the whole run.

Figure 4 shows the results. The results of each run have
been normalized to the run with no active technique for the
same application, and then averaged out across all applica-
tions. The figure shows the resulting average power con-
sumed in the run (X axes) against the total energy consumed
(Chart (a)), execution time (Chart (b), where execution time
is labeledDelay), and energy-delay product (Chart (c)). Since
SloHit has a behavior very similar toSleep, we do not show
SloHit to simplify the charts.

The figure shows that the behavior ofSleepis different
from the others as the average power decreases.Sleepdoes
not reduce the energy (Chart (a)), substantially slows down
the applications (Chart (b)) and, as a result, increases the
energy-delay product significantly (Chart (c)). Consequently,
due to its inefficiency, we only use it as the last resort in a
thermal crisis.

The other four techniques (IFilter , SubBank, VoltFreq, and
MemVolt) decrease the energy consumed by the chip (Chart
(a)) and, while they still slow down the application (Chart
(b)), they manage to reduce the energy-delay product or keep
it roughly constant (Chart (c)). They differ significantly,how-
ever, in the slope of their curves and in the maximum power
reduction that they can deliver. The maximum reduction is
delivered when they are applied statically. This situationcor-
responds to the leftmost point of each curve.

To compare these four techniques to each other, we exam-
ine Chart (c). Recall that we want to minimize the energy-
delay products. Under this requirement, the chart tells us
what is the best technique to apply individually, and how to
rank the techniques in case we want to apply them in a com-
bined manner.

If we want to apply a single technique, we should choose
the one that, for the desired average power reduction, deliv-
ers the lowest energy-delay product. For example, for power
reductions that are less than 20%,IFilter is the best.SubBank
is the best if we want reductions between 20 and 25%, while
VoltFreqis the best for reductions larger than 25%. From this
data, we can see thatIFilter andSubBankare good but lim-
ited. Since their scope is only memory system accesses, they
deliver modest power reductions.

If, instead, we want to rank the techniques for a possible
combined application of them, what matters is not the abso-
lute power reduction but the slope of the curves. Specifically,
we approximate each curve with a straight line and record the
slope of the line. The techniques with the highest positive
slopes should be given the highest priority. Consequently,in
our framework, the order of application of the techniques, ir-
respective of the power reduction desired, should beIFilter ,

8

thenSubBank, thenVoltFreq, and so on.

Note that, for our techniques, the shape of the curves makes
it possible to reasonably approximate each curve with a single
straight line. This may not be true, however, in other scenar-
ios, where we would need different straight lines in different
segments of a given curve. In this case, the ranking of tech-
niques would not be as straightforward: it would depend on
the power reduction desired.

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

N
or

m
al

iz
ed

 E
ne

rg
y

Normalized Average Power

IFilter
VoltFreq

Comb
Grad

(a)

1.00

1.05

1.10

1.15

1.20

1.25

1.30

1.35

1.40

0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

N
or

m
al

iz
ed

 D
el

ay

Normalized Average Power

IFilter
VoltFreq

Comb
Grad

(b)

0.5

0.6

0.7

0.8

0.9

1.0

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

N
or

m
al

iz
ed

 E
ne

rg
y*

D
el

ay

Normalized Average Power

IFilter
VoltFreq

Comb
Grad

(c)

Figure 5: Impact of dynamically applying a combination
of energy-management techniques: total energy consumed
by the applications (a), their execution time (b), and their
energy-delay product (c). The data is organized as in Fig-
ure 4.

Another complication occurs if the slope of a curve
changes when the technique is combined with other tech-

niques. While we have observed this effect in our framework,
it does not change the ranking of techniques listed above.

Finally, we note thatMemVoltreduces neither the average
power much nor the energy-delay product. It is, therefore,
unattractive. Its scope for impact is limited to applications
with many cache misses. Unfortunately, even in this case,
we find that it works poorly because the slower DRAM be-
comes a contention bottleneck that slows down the applica-
tion (Chart (b)).

Applying Combined Schemes
To see the potential of our framework, we combine the

three most effective techniques, namelyIFilter , SubBank, and
VoltFreq, into a single scheme. We consider two different
schemes:Combactivates and deactivates the three techniques
simultaneously, whileGrad activates and deactivates them
gradually.Grad uses the ranking selected before: it activates
IFilter first; if more power or energy reduction is needed, it
activatesSubBank; if more is needed, it activatesVoltFreq.
When the techniques must be deactivated, it follows the re-
verse order.

Figure 5 shows the results of repeating the experiments of
Figure 4 forComband Grad. For reference purposes, the
figure also includes the curves forVoltFreqandIFilter from
Figure 4. Note, however, that the axes have been expanded
relative to Figure 4.

We can see from Figure 5 that, for modest power reduc-
tions, the effectiveness ofCombis between that ofVoltFreq
and IFilter . Specifically, Chart (c) shows that, for a given
power reduction, the energy-delay product ofComb is be-
tween that ofVoltFreq and IFilter . Consequently,Comb
works well. In addition,Combcan deliver much higher power
reductions than the individual techniques: ifComb is stati-
cally applied, it can reduce the average power by up to 70%.
As a result, the final energy-delay product obtained in Chart
(c) is also much lower than for the individual techniques.

As can be seen in the figure, however,Grad is better. Chart
(c) shows that, for modest power reductions, this scheme de-
livers energy-delay products that are nearly as low asIFilter ,
the best of the three techniques. This is because, for this range
of reductions,Grad is largelyIFilter . When larger reductions
are desired,Gradstarts using the less optimal techniques. Fi-
nally, as we approach large reductions, it gets closer toComb.
In all cases except static application, however,Grad has a
lower energy-delay product thanComb(Chart (c)).

These results form the rationale behind our choice of Ther-
mal and Slack algorithms in Section 2.2: a gradual, priority-
ordered application of techniques that reduce the energy-
delay product. Consequently, we implement the Slack and
Thermal algorithms withGrad. In addition, as part of the
Thermal algorithm, we keep one additional technique ready
for activation in case of a thermal crisis. Such a technique,
which must be able to reduce the average power consumed as
much as needed, is chosen to beSleep.

Variation Across Applications
Finally, we note that, although different applications be-

have differently, the schemes chosen for our adaptive frame-
work work well across all applications. For lack of space, we
only briefly discuss the two individual applications that di-
verge the most from the average:GTreeandDTree. GTreehas
a high data cache miss rate (Table 4), which causesSubBank
to have relatively less impact.DTree, on the other hand, has
relatively more I-cache misses, which causesIFilter to be less
effective. Overall, however, it can be shown thatGrad is very
effective: it reduces the energy-delay product significantly,
while enabling large reductions in average power.

9

4.2 Evaluating the Thermal Algorithm
The goal of the Thermal algorithm is to keep the tempera-
ture of the chip lower thanMaxTemp, while minimizing any
resulting application slowdown. In addition, under no condi-
tion should the temperature surpassCrisisTemp. As indicated
before, we useGrad and, if CrisisTempis reached, we acti-
vateSleep. We call the resulting schemeGrad+Sleep.

To show thatGrad+Sleepis effective, we demonstrate that,
given differentMaxTemptemperature limits, it effectively
keeps the chip temperature belowMaxTemppractically all the
time, while slowing down the execution only modestly. Re-
call that, as stated in Section 3.4, we use&'()*+as a proxy
for temperature.

In Figure 6, we show the results of applyingGrad+Sleep
under different&'()*+limits. These limits are proxies for
MaxTemp. For each application, the limits considered are
/012&�,-., /032&�,-., 3042&�,-., and

3052&�,-., where
&�,-. is the original average power of the application (last
column of Table 4). To get an idea of the absolute values of
these limits, if we average them out across all the applica-
tions, we get 12.5, 10.4, 8.3, and 6.3 W, respectively. The
crisis &'()*+ is set sufficiently high such that it is never
reached. As usual, the data is normalized to the original con-
ditions of the application and then averaged out across all ap-
plications.

0

10

20

30

40

50

60

70

80

90

0.6 0.7 0.8 0.9 1 1.1 1.2

M
ac

ro
cy

cl
es

 O
ve

r
Li

m
it

(%
)

Normalized Power* Limit

Original
Grad+Sleep

(a)

1.0
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
2.0

0.6 0.7 0.8 0.9 1 1.1 1.2

N
or

m
al

iz
ed

 E
xe

cu
tio

n
T

im
e

Normalized Power* Limit

SleepOnly
Comb+Sleep
Grad+Sleep

(b)

Figure 6: Impact of enforcing different6789:�limits in
the chip: fraction of thermal macrocycles over the6789:�
limit (a) and resulting execution time of the applications (b).
These limits are proxies forMaxTemp.

Figure 6-(a) shows the fraction of thermal macrocycles
where &'()*+ is above the limit before we activate our
framework (Original) and after (Grad+Sleep). The chart
shows that, irrespective of how low we set the limit to, our

framework keeps&'()*+below it for practically all the time.
This is true even after setting the limit to 0.6 times the aver-
age power in the chip before activating the framework, which
is the leftmost point of the chart. Such a limit places 85% of
theOriginal macrocycles over the limit.

Figure 6-(b) shows the resulting execution time of the ap-
plications after activating the framework. If we focus on the
Grad+Sleepcurve, we see that, for modest limits, the scheme
induces minimal slowdowns. For example, after setting the
limit to 1.2 times the original average power, our framework
only slows down the applications, on average, by 8%.

Overall, from the previous two discussions, we see that the
goal of the Thermal algorithm is realized. For comparison
purposes, however, Figure 6-(b) also shows the impact of us-
ing less efficient schemes.Comb+SleepusesCombinstead
of Grad. SleepOnlysimply uses theSleeptechnique when
&'()*+surpasses the limit. More specifically, when a ther-
mal macrocycle records a&'()*+higher than the limit, the
fraction of non-sleeping cycles in the next macrocycle is de-
creased proportionally to how much&'()*+was over the
limit. This scheme is, therefore, self-regulating. From the fig-
ure, we see that such schemes induce higher slowdowns than
Grad+Sleep. SleepOnlyis especially inefficient for relatively
low &'()*+limits. However, it works well for the highest
limit because it is being applied in a fine-grained manner.

4.3 Evaluating the Slack Algorithm
The goal of the Slack algorithm is to save as much energy
as possible without extending the execution of the applica-
tion beyond a given tolerable slack. As indicated before,
we implement the algorithm withGrad. To show that our
framework is effective, we demonstrate that, given different
slack sizes,Graddelivers large energy savings without slow-
ing down the job noticeably more than tolerable.

In Figure 7, the framework is tested with different slack
sizes, specified as a percentage of the original execution time
of the application. As usual, the data is normalized to the
original conditions of the application and then averaged out
across all applications.

Figure 7-(a) shows the resulting energy consumed by the
applications for different slack sizes. The chart shows that
Grad delivers large energy savings by exploiting even small
slacks. For example, if the applications are allowed to exploit
a 10% slack, they consume only 60% of the original energy;
if they are given a 30% slack, they consume only 40%.

To put the effectiveness ofGrad in perspective, the chart
also shows the curves for;2<=>'?@AB?Aand;2<C=
>'?@AB?A. As a reference, the voltage-frequency scaling tech-
nique [11, 13] often falls in between the;2<

and;2<C
curves. Indeed, if the scaling of voltage and frequency is lin-
ear, since energy is proportional to the square of the voltage
and delay is inversely proportional to the frequency,;2<C
remains constant. In practice, the scaling deviates from linear
behavior and we move toward the;2<

curve. Overall, from
the distance between these curves andGrad, we can see that
our framework is very effective, especially with small slacks.

Figure 7-(b) shows the fraction of the tolerable slack that
is used up by our framework. We see that, for modest-sized
slacks,Grad tends to deviate little from using the maximum
tolerable slack. Any under- or over-utilization is limitedto
about 2% of the slack. As the slack increases over 35% of the
execution time, the applications cannot use it all, even when
all the techniques inGrad are in full operation. As a result,
part of the slack is wasted. Overall, we see that the goal of
the Slack algorithm is realized:Grad delivers large energy

10

reductions by exploiting even small slacks.

To gain insight into any possible improvements overGrad,
Figures 7-(a) and 7-(b) also show the behavior of an ideal
scheme that we callOracle. At any given microcycle in
the execution,Oracle applies the combination ofIFilter ,
SubBank, andVoltFreqthat best furthers the goal of the Slack
algorithm. SinceOracleis based on perfect knowledge of the
future, it should have, for a given slack, the lowest energy
curve in Chart (a). In some cases, however,Grad reduces
the energy slightly more thanOracle. This is because, due
to imperfect prediction of the future,Grad sometimes goes
slightly over the tolerable slack in Chart (b). Overall, how-
ever, the charts show that there is not much difference be-
tween theOracleandGradcurves, which suggests thatGrad
is very competitive.

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0 5 10 15 20 25 30 35 40 45 50

N
or

m
al

iz
ed

 E
ne

rg
y

Slack (% Original Execution Time)

E*D=const
E*D*D=const

Grad
Oracle

(a)

0.85

0.90

0.95

1.00

1.05

1.10

1.15

0 5 10 15 20 25 30 35 40 45 50

U
se

d
S

la
ck

/S
la

ck

Slack (% Original Execution Time)

Grad
Oracle

(b)

Figure 7:Effect of exploiting different execution slacks: re-
sulting energy consumed by the applications (a) and fraction
of the slack that is used up (b).

5 RELATED WORK
Of all the techniques and systems listed in Section 1, the work
most related to ours is the one on dynamic systems for chip-
level energy management. These systems can be classified
into three groups. The first one targets temperature control,
for example through context switching to jobs that consume
less power [27] or through speculation control [5]. The sec-
ond group targets energy efficiency without compromising
performance, for instance through speculation control [23] or
through reconfigurability [1]. A final group targets energy
efficiency by exploiting slack and, therefore, slowing down
the system. This is done, for example, through voltage and
frequency scaling [25] or through switching to less aggres-
sive instruction issue and speculation support [8]. Our work

is different in two ways: we target both energy efficiency and
temperature control, and we combine many techniques in a
unified dynamic framework.

Recently, dynamic application of voltage and frequency
scaling or various sleep modes have become popular among
microprocessors [11, 13].

A related approach is that of ACPI (Advanced Configu-
ration and Power Interface), an open industry specification
that defines an interface for the OS to activate low-power
modes [14]. Our work differs from ACPI in two ways.
First, in ACPI, any decision and control of power modes is
done by the OS. In our framework, the decision and control
is best done with a combination of software and hardware,
which enables finer-grained energy management. Second,
current ACPI releases are only concerned with various sleep-
ing modes, while we combine techniques that trade energy
for performance.

ACPI and other OS-driven approaches have been used at
the system level to save energy dynamically. For example, it
is feasible to save energy by dynamically shutting down un-
used modules of the system like hard disks or the LAN [4].
Alternatively, the savings can come from dynamically reduc-
ing the quality of service to the application [7].

6 CONCLUSIONS AND FUTURE WORK
To address the problem of high energy consumption in cur-
rent and upcoming chips, several schemes for dynamic en-
ergy management have recently been proposed. However,
such schemes are still relatively limited and, in addition,tend
to tackle only one of the two aspects of energy management:
either energy efficiency or temperature control. To address
these limitations, this paper has proposed a framework for
Dynamic Energy Efficiency and Temperature Management
(DEETM). The framework addresses the two aspects of en-
ergy management in a unified form. In addition, it combines a
suite of energy-management techniques that can be activated
individually or in groups according to a given policy.

The evaluation has shown that our framework is very ef-
fective, especially when the tolerable slowdowns and temper-
ature limits are modest. In these scenarios, dynamic applica-
tion of the most fitting techniques in the suite is most cost-
effective: temperature limits are enforced with small slow-
downs and large energy savings are delivered by exploiting
small slacks. For example, the framework delivers a 40% en-
ergy reduction with only a 10% application slowdown. Over-
all, we feel that it makes sense for future advanced chips to
include a DEETM framework like ours that combines multi-
ple techniques.

As part of our ongoing work, we are trying to improve our
DEETM framework by adding more techniques to it. We can
then quantify the complementarity of and the overlap between
different techniques.

Another approach that we are exploring is the potential of
profiling. We can profile an application and, depending on
what are its main energy and performance bottlenecks, tailor
the activation of the techniques. Experience with theOracle
scheme in Section 4.3, however, suggests that little more can
be done for the techniques and applications considered. How-
ever, other techniques and applications may behave differ-
ently. Finally, we are examining how to tailor the framework
for different classes of chips, namely high-end microproces-
sors, chip multiprocessors, and different types of systemson
a chip.

11

REFERENCES
[1] D. Albonesi. Dynamic IPC/Clock Rate Optimization. InInternational

Symposium on Computer Architecture, pages 282–292, July 1998.

[2] S. Altschul, W. Gish, W. Miller, E. Myers, and D. Lipman. Basic Local
Alignment Search Tool.Journal of Molecular Biology, 215(3):403–
410, October 1990.

[3] J. Alvarez et al. A Wide-Bandwidth Low-Voltage PLL for PowerPC
Microprocessors. IEEE Journal on Solid-State Circuits, 30(4):383–
391, April 1995.

[4] L. Benini et al. Monitoring System Activity for OS-Directed Dynamic
Power Management. InInternational Symposium on Low Power Elec-
tronics and Design, pages 185–190, August 1998.

[5] D. Brooks and M. Martonosi. Adaptive Thermal Managementfor
High-Performance Microprocessors. InWorkshop on Complexity Ef-
fective Design, June 2000.

[6] Y. Fisher. Fractal Image Compression: Theory and Application.
Springer Verlag, 1995.

[7] J. Flinn and M. Satyanarayanan. Energy-Aware Adaptation for Mobile
Applications. InSymposium on Operating Systems Principles, pages
48–63, December 1999.

[8] S. Ghiasi, J. Casmira, and D. Grunwald. Using IPC Variation in Work-
loads with Externally Specified Rates to Reduce Power Consumption.
In Workshop on Complexity-Effective Design, June 2000.

[9] K. Ghose and M. Kamble. Reducing Power in Superscalar Processor
Caches Using Subbanking, Multiple Line Buffers and Bit-Line Seg-
mentation. InInternational Symposium on Low Power Electronics and
Design, pages 70–75, August 1999.

[10] R. Gonzalez and M. Horowitz. Energy Dissipation In General Purpose
Microprocessors.IEEE Journal on Solid-State Circuits, 31(4):1277–
1284, September 1996.

[11] T. Halfhill. Transmeta Breaks x86 Low-Power Barrier.Microprocessor
Report, 14(2):1,9–18, February 2000.

[12] IBM Microelectronics. Blue Logic SA-27E ASIC.
http://www.chips.ibm. com/news/1999/sa27e/sa27e.pdf,February
1999.

[13] Intel. Pentium III Processor Mobile Module: Mobile Module Connec-
tor 2 (MMC-2) Featuring Intel SpeedStep Technology, 2000.

[14] Intel, Microsoft and Toshiba.Advanced Configuration and Power In-
terface Specification, 1999.

[15] K. Itoh. Low Power Memory Design. InLow Power Design Method-
ologies, pages 201–251. Kluwer Academic Publisher, 1996.

[16] K. Itoh et al. An Experimental 1Mb DRAM with On-Chip Voltage
Limiter. In ISSCC Digest of Technical Papers, pages 84–85, February
1981.

[17] T. Juan, T. Lang, and J. Navarro. Reducing TLB Power Requirements.
In International Symposium on Low Power Electronics and Design,
pages 196–201, August 1997.

[18] M. Kamble and K. Ghose. Analytical Energy Dissipation Models for
Low Power Caches. InInternational Symposium on Low Power Elec-
tronics and Design, pages 143–148, August 1997.

[19] Y. Kang, W. Huang, S. Yoo, D. Keen, Z. Ge, V. Lam, P. Pattnaik, and
J. Torrellas. FlexRAM: Toward an Advanced Intelligent Memory Sys-
tem. InInternational Conference on Computer Design, pages 192–201,
October 1999.

[20] J. Kin, M. Gupta, and W. Mangione-Smith. The Filter Cache: An
Energy Efficient Memory Structure.International Symposium on Mi-
croarchitecture, pages 184–193, December 1997.

[21] V. Krishnan and J. Torrellas. An Execution-Driven Framework for
Fast and Accurate Simulation of Superscalar Processors. InInter-
national Conference on Parallel Architectures and Compilation Tech-
niques, pages 286–293, October 1998.

[22] R. Lawrence, G. Almasi, and H. Rushmeier. A Scalable Parallel Al-
gorithm for Self-Organizing Maps with Applications to Sparse Data
Mining Problems. Technical report, IBM, January 1998.

[23] S. Manne, A. Klauser, and D. Grunwald. Pipeline Gating:Speculation
Control for Energy Reduction. InInternational Symposium on Com-
puter Architecture, pages 132–141, July 1998.

[24] J. Montanaro et al. A 160-MHz, 32-b, 0.5-W CMOS RISC Micropro-
cessor.IEEE Journal Solid State Circuits, 31(11):1703–1714, Novem-
ber 1996.

[25] T. Pering, T. Burd, and R. Brodersen. The Simulation andEvaluation
of Dynamic Voltage Scaling Algorithms. InInternational Symposium
on Low Power Electronics and Design, pages 76–81, August 1998.

[26] J. Quinlan. C4.5 - Programs for Machine Learning. Morgan Kauf-
mann, 1993.

[27] E. Rohou and M. Smith. Dynamically Managing Processor Tempera-
ture and Power. In2nd Workshop on Feedback-Directed Optimization,
November 1999.

[28] H. Sanchez et al. Thermal Management System for High Performance
PowerPC Microprocessor. InIEEE Computer Society International
Conference, pages 325–330, February 1997.

[29] S. Sidiropoulos and M. Horowitz. A Semidigital Dual Delay-Locked
Loop. IEEE Journal on Solid-state Circuits, 32(11):1683–1692,
November 1997.

[30] C-L. Su and A. Despain. Cache Design Trade-offs for Power and Per-
formance Optimization: A Case Study. InInternational Symposium on
Low Power Electronics and Design, pages 63–68, April 1995.

[31] C-H. Tsai. Temperature-Aware VLSI Design and Analysis. PhD the-
sis, Department of Electrical and Computer Engineering, University of
Illinois at Urbana-Champaign, May 2000.

[32] J. Veenstra and R. Fowler. MINT: A Front End for EfficientSimulation
of Shared-Memory Multiprocessors. InSecond International Work-
shop on Modeling, Analysis, and Simulation of Computer and Telecom-
munication Systems, pages 201–207, January 1994.

[33] N. Vijaykrishnan et al. Energy-Driven Integrated Hardware-Software
Optimizations Using SimplePower. InInternational Symposium on
Computer Architecture, pages 95–106, June 2000.

[34] S. Wilton and N. Jouppi. CACTI: An Enhanced Cache Accessand
Cycle Time Model.IEEE Journal on Solid-State Circuits, 31(5):677–
688, May 1996.

[35] N. Yeung. et al. The Design of a 55SPECint92 RISC Processor un-
der 2W. ISSCC Digest of Technical Papers, pages 206–207, February
1994.

[36] S-M. Yoo, J. Renau, M. Huang, and J. Torrellas. FlexRAM Architec-
ture Design Parameters. Technical Report CSRD-1584, Department of
Computer Science, University of Illinois at Urbana-Champaign, Octo-
ber 2000. http://iacoma.cs.uiuc.edu/flexram/publications.html.

APPENDIX A: APPLICATIONS USED
This appendix describes the applications used. In the following, we
use P.Mem to refer to the on-chip controller in the FlexRAM chip
that executes the serial sections of the applications. Moreinforma-
tion on the applications can be found in [19].

GTreeis a data mining application that generates a decision tree
given a collection of records that we want to classify [26]. The
records are distributed across the processors. The P.Mem decides
what attributes to use to split the tree and tells the processors what
branch they should examine. The processors process their records.

DTreeuses the tree generated inGTreeto classify a database of
records [26]. Each processor has a copy of the decision tree and a
portion of the database. Each processor processes its localrecords
sequentially. At the end of the execution, the results are accumulated
by P.Mem.

BSOMis a neural network that classifies data [22]. Each proces-
sor processes a portion of the input. Then, all processors synchro-
nize, a summary of the partial results is combined and re-distributed,
and the process begins again. While the original application used
floating point, we have converted the application into fixed point to
run on our simulated chip.

BLASTis a protein matching application [2]. The goal is to match
an amino acid sequence sample against a large database of proteins.
Each processor keeps a portion of the database and tries to match the
sample against it. Finally, P.Mem gathers the results.

Mpegperforms MPEG-2 motion estimation. The reference image
and the working image are distributed across the processors. Each
8x8 block in the working image is compared against the reference
image.

FIC is a fractal image compression application that encodes an
image using a scheme with a quad tree partition [6]. Each processor
has a portion of the image and some calculated characteristics, and
performs a local transformation to its portion of the image.The
application may have significant load imbalance.

12

