
Features:
 ➔ Static analysis techniques
 ➔ Eliminates instrumentation at compile time
 ➔ Useful for race detection, deterministic
 executon engines and STMs
➔ Works with ThreadSanitizer
➔ Works for multi-threaded C and C++ programs
 ➔ Precise section based alias analysis
 ➔ Augmented with verifiable directives
 ➔Validated with parsec, splash and phoenix suites
 ➔Implemented as LLVM pass
➔Holistic solution to detect data race issues
➔Open source

http://masc.soe.ucsc.edu/sbpa

Clang + LLVM
+ThreadSanitizer

SBPA LLVM
Pass

Optimized
Instrumented
Executable

Section Based Program Analysis to Reduce Overhead
of Detecting Unsynchronized Thread Communication

Madan Das, Gabriel Southern, Jose Renau
Dept. of Computer Engineering

University of California, Santa Cruz

Micro
Architecture
Santa
Cruz

Integration with ThreadSanitizer
➔ ThreadSanitizer slows down 12.5 times
➔ SBPA speeds it up 2.74 times
➔ Still detects the same races

Compilation time normalized to Baseline

Programs have phases
 ➔ Identifying phases in parallel code can
 improve precision of alias analysis
 ➔ Most data accesses in parallel code are
 non-communicating (non-racy and
 independent in same phase)

SBPA is effective!
➔ Eliminated 63% of total
 memory instrumentations

SBPA is accurate
➔ Validated with PARSEC,
 SPLASH and Phoenix suites

Cumulative effect of applying SBPA, alias improvements,
and use of some user directives, including MTROM
(multi-threaded read only memory) on all memory accesses

0

10

20

30

40

50

60

70

80

90

100

bl de sw fl ca st ft lu rt rd oc on hi
km mm pc ri sm lr

avg

%
 n

on
-c

om
m

un
ic

at
in

g Base
Single-TS

Disjoint-TS
Alias

Directives

CS1 CS2

CS3

CS4

TS2 TS3TS1

RxWx

Wy

RyRz Wx

CS1
Wx Rz CS5

Wz

Thread 1

Thread 2

0

2

4

6

8

Tsan-Zero Tsan Tsan-Base Tsan-SBPA

S
p

e
e

d
-
u

p
s

Optimizations

2 threads
4 threads
8 threads

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

bl de sw fl ca st ft lu rt rd oc on hi km m
m pc ri sm lr

Base SBPA

0

5

10

15

20

25

30

35

40

bl de sw fl ca st ft lu rt rd oc on hi km mm pc ri sm lr avg

Sp
ee

d-
up

s

Benchmarks

2 threads 4 threads 8 threads
Time ➔

Per benchmark speed-ups with 2, 4 and 8 threads

Geometric means of
speed-ups in different modes

0
10
20
30
40
50
60
70
80
90

100

bl de sw fl ca st ft lu rt rd oc on hi km m
m pc ri sm lr

av
g

Base NonComm LD

68% of loads are proven non-communicating. Baseline is Coredet.

 Section Identification in SBPA
1. Build reduced inter-procedural CFG
2. Find multithreaded code sections (MTCS)
 enclosed by create/join
3 foreach MTCS section ts:
.1 let b = beginning of ts
.2 let e = end of ts
.3 while b != e:
 .1 C = reachable barrier nodes starting from b.
.2 if C has a single node
 .1 Code from b to C is a new thread section
 .2 b = C
 .3 else exit search References:

[1] Reducing Logging Overhead for deterministic Execution,, Madan Das, Gabriel Souhern and
 Jose Renau, 4th Workshop on Determinism and Correctness in Parallel Programming, 2013.
[2] Dynamic race detection with llvm compiler, Konstantin Serebryany, Alexander Potapenko, Timur Iskhodzhanov, and Dmitriy Vyukov, in Runtime
Verification. Springer, 2012, pp. 110–114
[3] CoreDet: a compiler and runtime system for deterministic multithreaded execution, T. Bergan, O. Anderson, J. Devieti, L. Ceze and D. Grossman,
15th edition of ASPLOS on Architectural support for programming languages and operating systems

