
Features:
 ➔ Static analysis techniques
 ➔ Eliminates instrumentation at compile time
 ➔ Useful for race detection, deterministic
    executon engines and STMs
➔ Works with ThreadSanitizer
➔ Works for multi-threaded C and C++ programs
 ➔ Precise section based alias analysis
 ➔ Augmented with verifiable directives
 ➔Validated with parsec, splash and phoenix suites
 ➔Implemented as LLVM pass
➔Holistic solution to detect data race issues
➔Open source

http://masc.soe.ucsc.edu/sbpa
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Integration with ThreadSanitizer
➔ ThreadSanitizer slows down 12.5 times 
➔ SBPA speeds it up 2.74 times
➔ Still detects the same races

Compilation time normalized to Baseline 

Programs have phases
  ➔ Identifying phases in parallel code can
    improve precision of alias analysis
  ➔ Most data accesses in parallel code are
    non-communicating (non-racy and
     independent in same phase)

SBPA is effective!
➔ Eliminated 63% of total
   memory instrumentations

SBPA is accurate
➔ Validated with PARSEC, 
    SPLASH and Phoenix suites

Cumulative effect of applying SBPA, alias improvements,
and use of some user directives, including MTROM 
(multi-threaded read only memory) on all memory accesses
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Optimizations
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Benchmarks
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Time ➔

Per benchmark speed-ups with 2, 4 and 8 threads

Geometric means of 
speed-ups in different modes
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68% of loads are proven non-communicating. Baseline is Coredet.

        Section Identification in SBPA
1. Build reduced inter-procedural CFG
2. Find multithreaded code sections (MTCS) 
      enclosed by create/join
3 foreach MTCS section ts:
.1 let b = beginning of ts
.2 let e = end of ts
.3 while b != e:
 .1 C = reachable barrier nodes starting from b.
.2 if C has a single node
  .1 Code from b to  C is a new thread section
 .2 b = C
  .3 else exit search References:
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