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1 Introduction

Merging processors and memory into a single chip has thekmellvn benefits of al-
lowing high-bandwidth and low-latency communication beén processor and mem-
ory, and reducing energy consumption. As a result, mangmifft systems based on
what has been called Processor In Memory (PIM) architestoa®e been proposed [3,
7,8,10,12,13,1,14-16, 18].

Recent advances in technology [4, 5] appear to make it pessibintegrate logic
that cycles nearly as fast as in a logic-only chip. As a reputicessors are likely to put
much pressure on the relatively slow on-chip DRAM. To harttik speed mismatch
between processors and DRAM, these chips are likely to drechon-trivial memory
hierarchies in each DRAM bank.

With many on-chip high-frequency processors, all of therteptially accessing the
memory system concurrently, these chips will consume muoengy. In addition, these
chips are likely to be used in non-traditional places like themory of a server [3, 7,
12] or the 1/O subsystem [1], which may not have heavy-dutlling support. Conse-
quently, it is important to design the chips for energy effiy.

In this abstract, we examine, from a performance and eneffggiency point of
view, the design of the memory hierarchy in a multi-bankeld Bhip with many sim-
ple, fast processors. Our results suggest the use of peegsor memory hierarchies
that include modest-sized caches, simple DRAM bank orgéioizs that support seg-
mentation, and no prefetching.

2 Memory Hierarchiesfor PIM Chips

Our focus architecture is a PIM chip that includes tens cdithetly simple, high-
frequency processors, each of which is associated withladfdDRAM. Such a design
has been suggested for systems like Active Pages [12, E{RAIM [7], and DIVA [3]
among others. The chip can be modeled as in Figure 1-(a)awherganization of the
processors, memory, and network may vary. We feel, how#vatrcurrently-proposed
designs are relatively conservative in logic speed. Readrdances in technology appear
to allow logic to cycle nearly as fast as in a logic-only cip%]. This means that these
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chips may soon include processors cycling at about 800-MI88. Such processors
are likely to put much pressure on the slower DRAM.
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Fig. 1. Example of chip architecture consider&®, DB, andRow Dec stand for row buffer, data
buffer and row decoder, respectively.

To handle the speed mismatch between processors and DRASSE tthips are
likely to associate a non-trivial memory hierarchy to eadRAM bank. In this pa-
per, we assume a per-bank baseline memory hierarchy asureFig(b). In the figure,
the instruction memory hierarchy includes a fast SRAM memibne data memory hi-
erarchy includes a cache with hardware sequential preéétthine. The DRAM bank
itself is sub-banked and has row and data buffers. For exgariure 1-(c) shows the
DRAM organized into 8 sub-banks, with 10 row buffers, and 8-B& data buffers.

Unlike in memory-only chips, where the DRAM organizationoiten limited to
standard designs, embedded systems allow many differganizations for the DRAM
array. For example, designers can change the width andchlefigt DRAM sub-bank,
and the number of sub-banks. These changes can affect foenpance delivered and
the energy consumed by DRAM accesses, and the area utilized.

In a traditional DRAM array organization, when a bank is &seel, every other
sub-bank is activated. Consecutive sub-banks are notasetivbecause they share a
row buffer. Figure 2-(a) shows a 4 sub-bank organization.ndlg consider three im-
provements: segmentation, interleaving, and pipelining.

With segmentation (Figure 2-(b)), only one sub-bank isvatéid at a time. The
resulting row buffer decoupling changes the hit rate of the buffers. In addition,
DRAM accesses consume less energy: because only half ofttlieels are activated,
about 50% of the energy is saved.

With interleaving, each sub-bank is vertically sliced andaga bus is assigned to
each of the resulting slices. Figure 2-(c) shows a 2-waylgdged system. The perfor-
mance is higher because both data busses work in paraligiré~2-(d) shows a timing
diagram with the maximum overlap, assuming a single addness As for energy, al-
though row buffer hits now cost a bit more, DRAM accessesragave about 50% of
the energy because only half of the cells are activated. Téewsed increases.

Finally, one problem shown in Figure 2-(d) is that reads frdifferent sub-banks

that share a data bus are serialized by long sub-bank occyipares. With pipelining,
these sub-banks can overlap their occupancy times (Fig(e® 2T he only serialization
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Fig. 2. Different DRAM bank organizations and timings.

happens in the shared address bus and data bus. The resghes performance. As
for energy, pipelining has only a small impact.

3 Evaluation Environment

We evaluate the PIM chip of Section 2 using a MINT-based sathuh system [9].
The architecture modeled is a single chip with 64 processmmgaected in a ring. Each
processor is associated with a 1-Mbyte DRAM bank like in Figlr(b). The baseline
parameters of each processor-bank pair are shown in Tableeltarget technology is
IBM’s 0.18 um Blue Logic SA-27E ASIC [4] with the default voltage of 1.8 V.

[[Processor [D-Cache  [I-Memory  [Data Buffer [Row BuffejSub-Bank ||

2-issue in-order 800MH5z: 8KB, WB{Size: 4 Kinst{Number: 1 |Number: 5|Number: 4
BR Penalty: 2 cycles |Assoc: 2 Line: 4 inst. |Size: 256 b |Size: 1 KB|Cols: 4096
Int,Ld/St,FP Units: 2,1,0Line: 32 B |RTrip:1.25ngBus: 256 b |Bus: 256 b|Rows: 512
Pending Ld,St: 2,2 RTrip:1.25ns| RTrip:3.75n$RTrip:7.5n$RTrip:15 n

Table 1. Parameters for a single memory bank and processor paireltatiie,BR and RTrip
stand for branch and contention-free round-trip latenoynfthe processor, respectively.

The names for the DRAM bank organizations that we evalua€liad, S, SP,
IS and ISP, which refer to traditional, segmented, segmented pipdlinnterleaved
segmented, and interleaved segmented pipelined, resglgctn each case, we add
(4, 7) to refer toi-ways interleaved withji sub-banks per way.

To estimate the energy consumed in the chip, we have applaithg-down theory
to data on existing devices reported in the literature, dbagaised several techniques
and formulas reported in the literature [6,17, 19, 20]. We tk contributions of the
processors, clock, memory hierarchies, and other modAletetailed discussion of
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HAppI. HWhatItDoes Problem Size ’HitsgtejPo\\//sé?(g\J/\e}”

GTree ||Data mining: tree generations MB database, 77.9 K records, 29 attributes/record 0.507 10.2
DTree ||Data mining: tree deploymeftt.5 MB database, 17.4 K records, 29 attributes/record | 0.986 10.8
BSOM ||BSOM neural network 2 K entries, 104 dims, 2 iters, 16-node network, 832 KB db.947 15.5
BLAST ||BLAST protein matching |12.3 K sequences, 4.1 MB total, 1 query of 317 bytes | 0.969 8.7
Mpey MPEG-2 motion estimation |1 1024x256 frame plus a reference frame. Total 512 KB 0.999 11.3
FIC Fractal image compressor |1 512x512 image, 4 512x512 internal structure. Total 2|M&978 6.1

Table 2. Applications executed.

the methods that we have followed can be found in [21]. In,[24 have addition-
ally validated our estimates with CACTI [19] and with publési results on the ARM
processor [11].

For the experiments, we use 6 applications that are suitahbilee integer-based
PIM chip considered: they access a large memory size, aygeeallel, and are integer
based. They come from several industrial sources. We ham#iglzed each application
into 64 threads by hand.

Table 2 lists the applications and their characteristityTinclude the domains of
data mining, neural networks, protein matching, multirmedind image compression.
Each application runs for several billions of instructions

4 Evaluation

The best memory hierarchy organization depends on the artsting optimized. We
consider two metrics: performance and energy-delay ptodnoour evaluation, we
start with the baseline architecture of Section 3 and thepitaAs a reference, we use
an ideal architecturé®rf): loads and stores are satisfied with zero latency and comsum
no energy in the memory system.
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Fig. 3. Effect of the DRAM bank organization on the IPC in systemshviitKbyte (a) and 8-
Kbyte (b) data caches.

M aximizing Performance
To compare performance, we measure the average IPC deliagréhe combined
64 processors for the duration of the application. We firatuate the effect of the mem-



ory bank organization. Figure 3 shows the IPC of the appdinatrunning on the base-
line architecture for different memory bank organizatiddlarts (a) and (b) correspond
to systems with 1- and 8-Kbyte D-caches, respectively. Temaory organizations are
ordered from the simpler ones on the left side to the moreistpited ones on the
right side. Each chart has &werage line that tracks the average of all applications.

Figure 3-(a) shows that performance improves slightly asmwaee to the more
sophisticated designs. Going frofrad(1,4) to ISP(2,8) increases the IPC by an average
of 8%. However, for 8-Kbyte caches (Figure 3-(b)), the clesngre very small. This is
because, with large caches, there are relatively few caésgemand, as a result, the
type of DRAM bank organization matters less.

Comparing the IPC iPerf andISP(2,8), we see the IPC lost in the most advanced
memory system. This fraction is on average 18% and 11% inr&&8-(a) and (b).

Figure 5-(a) shows the effect of the cache size and prefejchipport. We consider
the baseline architecture with three different DRAM bangamizations: conservative
(Trad(1,4)), aggressivel&P(2,8)), and in-betweenl §2,4)). The figure shows the IPC
averaged over all applications. We analyze caches of 2% pbytkbyte, 8 Kbytes, and
16 Kbytes, all with and without prefetching. For each memanyanization, there are
8 bars, labeled with the cache size in bytes followedPlyr NP for prefetching or not
prefetching, respectively.

The best performance is achieved with the largest cach¢l6z¢bytes). However,
large caches deliver diminishing returns. The figure alsmvsithat adding the simple
prefetching support considered here makes little diffeeein performance.
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Fig. 4. Effect of the DRAM bank organization on the energy-delayduet in systems with 1-
Kbyte (a) and 8-Kbyte (b) data caches.

Minimizing the Energy-Delay Product

In embedded systems, a common figure of merit is the energy-geoduct [2]. A

low product implies that the system is both fast and eneffigient. Consequently, in
this section, we compare the energy-delay product of theschith different memory
hierarchy designs. To compute the energy consumed, we aithe wontributions of all
the subsystems in the chip.

Figures 4-(a) and 4-(b) show the energy-delay product offiigunder the baseline
architecture for different DRAM bank organizations. Ckg) and (b) correspond to
systems with 1- and 8-Kbyte D-caches respectively, and ig@nized as in Figures 3-
(a) and 3-(b). For each application, the charts are norethliaPerf.



In systems with 1-Kbyte caches (Figure 4-(a)), the averamegy-delay product
decreases for the more advanced memory organizations xeorpde, the product in
1SP(2,8) is only 60% of that inTrad(1,4). The reason is that advanced DRAM bank or-
ganizations deliver slightly higher IPCs and consume mashk energy in the process.
However, as caches increase to 8 Kbytes (Figure 4-(b)),itaeges are smaller. Over-
all, for 8-Kbyte cache systems, only segmentation (goimgnfiirad(1,4) to §(1,4))
makes a significant difference. Supporting interleaving entreasing the number of
sub-banks from (2,4) to (2,8) has only a small effect.
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Fig. 5. Effect of the cache size and prefetching support on IPC (d)eaergy-delay product (b).

O

Figure 5-(b) measures the energy-delay product for theageeof all applications
for different cache sizes and prefetching support. The &r@sormalized t&erf. From
the figure, we see that designs with larger caches tend totzaree energy-delay prod-
ucts. For example, ifirad(1,4), the product with 16-Kbyte caches is about 30% of the
product with 256-byte caches. The reason is that cachestgmable effect: they speed
up the program and, in addition, eliminate energy-consgmiemory accesses. We ob-
serve, however, that for the more advanced memory orgémizaaind large caches, the
trend reverses: 16-Kbyte caches are slightly worse thab@e<caches. The reason is
that the diminishing returns in lower miss rates delivergdbibger caches do not com-
pensate for the higher energy consumption that larger saetugiire. We also see that
simple prefetching does not help.

5 Discussion

In a PIM chip like the one analyzed here, minimizing the epatglay product is likely
to be the top priority. Our results suggest to use modestdi>-caches (8 Kbytes), a
simple DRAM bank organization that supports only segméraand no prefetching.
Modest-sized caches are effective: they speed-up thecatiph, are energy-efficient,
consume modest area, and render fancy DRAM bank organiadticgely unnecessary.
If area is not an issue, the energy-delay product can be wegrslightly by supporting
interleaving in the DRAM bank and increasing the number d&fBanks.
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