
Reducing Logging Overhead for Deterministic Execution

Madan Das Gabriel Southern Jose Renau

Dept. of Computer Engineering, University of California Santa Cruz
{madandas, gsouther, renau}@soe.ucsc.edu

http://masc.soe.ucsc.edu

ABSTRACT
Deterministic execution of parallel applications can be en-
forced by logging speculative memory accesses and restoring
saved state in the event of a conflict. However, logging all
accesses has a prohibitive overhead. We propose three tech-
niques to reduce logging in an always-on transactional mem-
ory system. The first, Threaded Section Analysis, statically
determines when only a single thread is running, so instru-
mentation is unnecessary. The second, Loop Invariant Log
Motion, reduces logging requirements for loops by moving
logging operations outside loops. The third, Multi-Threaded
Read Only Memory, reduces instrumentation significantly
using simple programmer inserted directives. When com-
bined, these techniques reduced logging requirements by an
average of 63% in the benchmarks we evaluted.

1. INTRODUCTION
Parallel programming is significantly more difficult than

sequential programming because the programmer must ex-
plicitly consider how the different parts of a parallel program
communicate with each other. Threads have proved to be
popular in shared-memory systems, allowing programs to
communicate simply by sharing objects or pointers between
threads. However, this simple communication mechanism
creates a potential for errors such as deadlock, atomicity vi-
olations, and order violations. The difficulty is compounded
by non-deterministic interleavings of memory accesses that
vary from run to run, producing different results for the same
input.

Recent research has proposed ways to enforce determin-
istic execution of multithreaded applications. By dividing
execution into parallel and serial phases researchers have
been able to take advantage of multiple processing cores to
speed up application performance while maintaining the de-
sirable properties of deterministic execution. However, de-
terministic execution systems incur overhead compared to
non-deterministic systems, due to operations to synchronize
accesses to shared memory, as well as thread serialization.

Bergan et al. [1] proposed CoreDet, a software frame-
work for enforcing deterministic execution, which instru-
ments loads and stores to enforce determinism. As a software-
only framework, CoreDet implementation attains reason-
able performance in part because of the observation that
not all loads and stores need to be instrumented — only
those involved with inter-thread communication. While this
exact subset cannot be determined statically, many of the
non-communicating loads and stores can be identified using
static analysis techniques, and do not need to be instru-

mented.
In this paper we present three novel techniques to re-

duce instrumentation for software-only deterministic execu-
tion runtime systems. We do so by performing novel thread
escape analysis which identifies memory accesses which are
guaranteed to be data-race free, and consequently don’t need
to be instrumented. The proposed techniques can also be
applied to logging based software transactional memory sys-
tems (STMs) or to data race detection mechanisms. To
evaluate its effectiveness, we have an infrastructure similar
to CoreDet as the baseline, and we add our three new opti-
mizations to further reduce instrumentation overhead.

First, we propose Threaded Section Analysis (TSA) to
statically analyze a program to identify its single threaded
and multithreaded sections of execution. Only the multi-
threaded sections of code need to be instrumented to en-
force deterministic execution. Using TSA we skip instru-
mentation of sections of an application that are guaranteed
to execute only in single-threaded mode. A mod-ref analy-
sis [2] is integrated with TSA to detect read only accesses
during threaded sections.

Second, we propose Multi-Threaded Read-Only Memory
(MTROM) which allows memory to be written to in single-
threaded mode, but is read-only when the program is run-
ning in multithreaded mode. TSA with mod-ref is able to
detect this pattern too, but due to imperfect alias analysis
several read-only accesses can not be eliminated. MTROM
marks a memory region during allocation as read-only dur-
ing multithreaded execution. This explicit marking is prop-
agated through the alias analysis to further reduce instru-
mentation. Since the programmer can incorrectly mark a
region as read-only, we protect these pages as read-only dur-
ing multithreaded phases to guarantee that the memory is
not written and that the developer did not introduce any
bugs.

Third, we propose Loop Invariant Log Motion (LILM) to
separate the access instrumentation call from actual load or
store. Similar to loop invariant code motion, we can then
move the logging operation out of the loop body to its pre-
header.

The rest of this paper is organized as follows: in Section 2
we describe the implementation of Threaded Section Analy-
sis; in Section 3 we describe Multithreaded Read-Only Mem-
ory; in Section 4 we describe Loop Invariant Log Motion; in
Section 5 we evaluate our experimental setup and results;
in Section 6 we survey related work; and finally Section 7
concludes.

2. THREADED SECTION ANALYSIS
Threaded Section Analysis (TSA) is based on the obser-

vation that applications frequently are divided into paral-
lel and serial sections. Using TSA we divide the program
in disjoint thread sections or code regions that cannot ex-
ecute simultaneously (Section 2.1). The advantage is that
this enables improving thread escape analysis and detecting
unnecessary accesses (Section 2.2). For example, the initial-
ization code region may be done by a single thread which
by definition cannot have sharing. Even more frequently, we
can use a mod-ref analysis to detect code regions that have
read-only accesses.

2.1 Threaded Section Detection
We define a threaded section as a program segment that

completely encapsulates creation and joining (or cancella-
tion) of threads that execute in parallel. The code segments
immediately adjacent to a threaded section have only one
active thread for the user program.

Definition: A Threaded Section (TS), represented by a
tuple (S, T), where S and T are instructions, is a set of all
basic blocks and instructions between S and T , both inclu-
sive, such that all thread creations and completions in this
region are dominated by S, and T is a post-dominator of all
the instructions in this set, and the number of active user
threads immediately preceding S and immediately succeed-
ing T is 1.

We can think of a TS as the top level code for a parallelized
part of a program. Since the threads created within a TS
all terminate within the same TS, when we are concerned
about synchronization operations between any two threads
created in this section, we only need to consider code that
is reachable from this TS. More precisely, it is the set of all
functions that act as start functions for the threads, and the
code in the parent thread that is executed in this section.
Often, the parent thread just waits for the completion of
child threads or acts as a master synchronizer.

S

T

t1 = Create thread(F1, D1)

t2 = Create thread(F2,D2)

t3 = Create thread(F2,D3)

Join thread(t3)

Join thread(t2)

Join thread(t1)

Figure 1: A typical threaded section of program

Figure 1 shows a typical threaded section, where three
child threads are started, with function and data pairs of
(F1, D1), (F2, D2) and (F2, D3). Thus, a thread start can
be seen as a tuple (Fi, Di) where it executes function Fi on
data set Di. In the example shown, S is a dominator of the

thread creations, and T is a post-dominator of all thread ter-
minations. So, this TS can be represented as (S, T). Mem-
ory instrumentations can be limited to the threaded sections
of a program. This is useful since in many complex pro-
grams, the portion of program that is performance-critical
may be small, yet consume most of the runtime.

2.1.1 Identifying Threaded Sections
TSA is an inter-procedural analysis, so it is applied to the

whole program. TSA uses a top-down recursive method to
descend into the main function of a program, and looks for
functions that create and join (or cancel) threads. If during
a depth-first traversal of the function call tree, it finds a
function that has both thread create calls and thread join
calls, it considers that function for TS. If it detects that the
post-dominator of all create calls dominates the dominator
of all join calls, it considers this as a single TS. Otherwise, it
finds subsets of thread create and thread join calls with the
same relationship, in order to identify multiple TS in that
code segment. In such cases, there will be multiple subsets
of thread creations and thread joining, such that each subset
holds the TS property described earlier.

TSA assumes that a function spawning threads also ter-
minates or joins them. Note that only the top level thread
sections are of interest to TSA, as outside those regions the
program is running in single threaded mode.

After identifying a TS, TSA begins analyzing the thread
start functions in each TS separately, in conjunction with
the code in the root thread in the same TS. Since our focus
is for the multi-threaded sections only, we can safely ignore
instrumenting all functions that are not reachable from the
thread start functions or from the main thread in threaded
sections. The functions reachable from these regions are
identified by a depth-first traversal of instructions in a TS.

2.1.2 Phase Analysis in TSA
Now, we describe how we extend TSA when each thread is

comprised of multiple phases. This is a finer grained version
of what we described in Section 2.1.1. In this case, we want
to identify smaller tasks that can execute in parallel within
each TS. A task boundary may be identified in different
ways, mainly through a pthread barrier call. Identifying
the phases of a parallel section can improve the precision of
analysis for the parts of the program that execute in parallel.

To decompose a TS, we look into the thread start func-
tions and identify thread synchronization points in those
functions. To simplify phase boundaries, we introduced a
new directive, sync threads, that acts as a sync-all barrier
for all active threads. If each of the thread start functions in
a TS ts contains exactly the same number of such synchro-
nization points (s1, s2, ...sn), and si−1 dominates si, then we
have identified multiple phases in ts.

Figure 2 shows an example of phases in a threaded sec-
tion that we are trying to identify with our algorithm. The
parent thread creates p child threads in this threaded sec-
tion. Each of the child threads is further decomposed into
smaller phases T (1, 1), T (1, 2) and so on at thread barriers.
The entire TS begins at basic block B and terminates at T ,
where B to T is a smaller flow graph in the program CFG.

Since all threads arrive at sync threads before any can
exit that point, we can segregate memory accesses into dis-
joint sets corresponding to each of the phases. Hence, when
we instrument memory accesses in each of these, we only

T(1,1) T(1,2) T(1,3) T(1,n)

T(2,1) T(2,2) T(2,3) T(2,n)

T(i,1) T(i,2) T(i,3) T(i,n)

T(p,1) T(p,2) T(p,3) T(p,n)

Parent thread

Phase 1 Phase 2 Phase 3 Phase n

S T

Starts Barrier1 Barrier2 Barrier3 Barrier (n-1) Joins

Figure 2: A decomposition of threaded section into
smaller, disjoint parallel phases

need to consider the memory accesses within the context of
that specific phase in conjunction with the parent thread.
Since the parent thread is mainly waiting for other threads,
we consider it to be overlapping with all phases in its en-
tirety. Thus, if the program obeys some basic structure of
multi-threading, the compiler is able to significantly improve
synchronization overheads by eliminating much of the prov-
ably redundant access tracking.

To use multiple phases in a section, we do not require
that all the thread start functions in that TS be the same.
Rather, we only require that all of them have the same
numbe of phases. This restriction might be relaxed, but
we don’t think that it is practical to do so. Also, it is not
always possible to decompose these thread start functions
into phases. We have incorporated two common situations
where we think such decompopsition is practical to do:

– Straight Line Threaded Function: In this case, the global
synchronization points are not part of any loop. There is
a simple dominance and post-dominance relatioship from
the function entry point to the first, second and last syn-
chronization point, to the function return. Fig 3 (a) de-
picts the control flow of such a function.

– Looped Threaded Function: In this case, all global syn-
chronization points are enclosed in a top level loop in
the threaded function. The loop has a single exit point,
which is the first branch. So, either all the synchroniza-
tion points are exercised, or none of them are exercised.
The global synchronization points still dominate and post-
dominate each other. Special handling can be done for
treating the program exits, such as the ones resulting
from assert or throw calls within the phased code. If
we ignore those outbound edges, then the CFG of such
a threaded function should look as in Fig 3 (b). How-
ever, in this case, we have to merge the load/stores in the
first part of the function with the last load/store set, as
they may be executed in overlapping manner by different
threads. It is okay for a particular thread to execute this
outer loop fewer times than some other threads, since not
executing the loop by a thread does not violate the condi-
tion that multiple threads are executing different sets of

loads/stores. Each thread either executes only one set of
load/store instruction in a particular phase, or they do not
execute anything. Therefore, this segmentation of loads
and stores into disjoint subsets is a sound method. Also,
if a subset of active threads would return from the func-
tion earlier than others, the global barrier sync thread
would continue to work for other thread by its definition.
In practice though, we expect that most often, all these
threads to execute the loop the same number of times.

We also note than in the worst case, all the phases are
collapsed into a single phase, implying that all loads and
stores in the TS can potentially overlap with each other.
The compiler pass marks the load and store instructions
with the set of phases from which they can be invoked.

Loads/stores

entry

sync 1

Loads/stores

Loads/stores

sync n

return

(0)

(1)

(n)

(a)

Loads/stores

entry

sync 1

Loads/stores

Loads/stores

sync n

return

Loads/stores

Test

(0)

(0)

(n)

(1)

(b)

Figure 3: Structure of thread start functions suit-
able for phased thread section analysis. (a) Straight
Line (b) Looped

2.2 Reduce Instrumentation in TS
The previous section show how to divide the program ex-

ecution in different Thread Section (TS). Since the TS are
disjoint, we just need to perform thread escape for each TS
independently.

Data races are either of RAW, WAW and WAR, and re-
quire a write. If a TS section is executed by a single thread
like in typical initialization, we do not need to instrument
the memory accesses because we guarantee by definition that
it cannot escape. Similarly, if a multithreaded thread sec-
tion only performs read-only accesses in a given array, we
do not need to instrument these loads.

While performing TSA, a set of points-to memory regions
that are modified in a phase of a TS is created for each
phase. Once phase-specific mod-ref information is available,
the algorithm to instrument memory accesses checks if there
is an overlap between the set of parallel phases executing
that instruction and the set of phases writing to that points-
to set. If there is no overlap between these two sets of phases,
the memory access does not need to be instrumented.

TSA is based on a context insensitive, flow insensitive uni-
fication based pointer analysis method as described in [3].

Only its mod-ref analysis is context sensitive. Therefore,
when it considers the possible set of pointers a particular
instruction points to, it includes all possible points-to loca-
tions. In this scheme, each array is treated as a different
memory region. In the absence of array bound reads and
writes, and unknown function calls within the thread sec-
tions, this conservatively considers all possible aliasing. For
unknown function calls, it conservatively assumes that such
a function can modify any memory location. TSA is inter-
procedural and is applied on the whole program. So, it is
aware of all the functions that are called at any place within
each TS.

2.3 Limitations of TSA
TSA currently only identifies TS within the same function.

This seems to be the most common case, and is not a critical
issue. If the thread creations and joining happen in different
functions, then the programmer can most likely move them
into a single function.

TSA relies heavily on the CFG of the program, especially
in the region of interest for parallel segments. Sometimes,
if there are complex branching or exits (for example, due to
asserts), which break the dominance and post-dominance re-
lationships of start and end points of a thread section, TSA
fails to identify the TS. In such cases we fall back on a less
precise method, where we simply treat all thread creations as
being in the same TS, along with the whole function body
that starts and ends all the threads. This secondary ap-
proach also provides a significant improvement in mod-ref
analysis, though not as precise as desired. We also experi-
mented with user directives and special primitive functions
that can be used by the programmer to demarcate the TS
and synchronization points within a TS. These directives
help the compiler optimize analysis of those regions, assum-
ing the user-inserted directives are correct.

3. MT READ ONLY MEMORY
In this section, we describe Multithreaded Read-Only Mem-

ory (MTROM), that we define as a region of memory that
is read-only, only when an application has multiple active
threads. For data races to happen across multiple threads,
at least one thread accessing a shared memory location must
perform a write to that location while some other thread
reads or writes to the same location in the same thread sec-
tion. It is quite common practice to have a single thread
write to memory locations during an initialization phase,
and during the parallel phase of the program, multiple threads
only perform reads of that memory region. A very common
example of this is the parallel dense matrix multiplication.
During the parallel phase of the program, the matrices be-
ing multiplied are not written to, only the product matrix is
modified. Hence, the input matrices can be allocated from
MTROM memory space. Another example of the usefulness
of this technique is in the case of large graphs where ad-
ditions and deletions only happen in single-threaded mode,
but the query operations happen in multi-threaded mode.
In the benchmarks we tried, many exhibited this nature of
parallel execution.

Ideally, static analysis as described in Section 2.2 would
identify all such accesses. But due to limitations in pointer
analysis and other static analysis methods in tracking large
number of objects allocated at different places, it is not
always possible to do so. In the MTROM approach, the

programmer provides a hint to compiler by allocating heap
memory from MTROM regions that is not supposed to be
written in multi-threaded mode. The programmer can also
mark some globals as MTROM, if desired. In practice, we
observed that most large chunks of such memory are heap
allocated or mmaped, as their sizes are not known upfront.
We provide MTROM versions of functions (such as malloc

and mmap), and require the programmer to use them when al-
locating MTROM memory. The pointer analysis then marks
the memory objects created by these methods as ’MTROM
heap’, and similarly for global memories, it marks them as
’MTROM global’. During access instrumentation in thread
sections, if a read memory access is traced to a points-to
set that points to only MTROM-heap or MTROM-global
regions, then that memory read access is not instrumented.
On the other hand, if there is a write access to a points-to
set containing only MTROM objects in some parallel section
of the program, then the compiler pass can flag that as an
error or warning. If the points-to set is a mixture of both
MTROM and non-MTROM memory regions, then the read
and write operations are instrumented as usual. The run-
time library protects MTROM regions from writes during
parallel phases by marking the pages read only.

To detect incorrectly marked MTROM memory regions,
a test can be be implemented either in all the executions or
during debug mode. To avoid adding overhead with addi-
tional checks in the write logging functions, we propose to
protect as read-only the memory pages marked as MTROM.
The read-only protection happens during multithreaded ex-
ecution, and they are marked as read-write whenever the
program goes to a single thread execution phases. These
checks are to detect incorrect MTROM annotation by the
programmer, and also to detect inadvertent writes to such
memory locations in parallel mode.

In the benchmarks we analyzed, using MTROM required
minimal changes (a few lines) to the source code. The only
change was to replace few malloc, mmap, free and munmap

with their mtrom equivalents, and annotating at one place
to ensure that the memory being accessed is mtrom. This
method is not automatic, but it is robust and general, since
the writes to such memory are protected in parallel phases.
It provides a strict guarantee to the programmer that there
are no races through the MTROM memory regions.

4. LOOP INVARIANT LOG MOTION (LILM)
We describe a novel technique to reduce overhead of log-

ging array accesses in loops. We observe that if the address
of an array does not change, then we can make a single call
to log all the accesses to its elements in one call to the run-
time library. Depending on the size of the array element,
this can significantly reduce redundant calls. This is appli-
cable to both read and write accesses. The loop must not be
split across multiple tasks (or quanta) for this optimization
to work.

Example 1 A simple loop with loads and stores

for(int i = start; i < end; i++) {

C[i] = A[i] * B[i];

}

In Example 1, the read and write operations are not loop
invariant, and hence cannot be hoisted outside the loop.

However, for logging, we are only concerned with the range
of addresses accessed in the loop, and not the actual data
content. So, instead of replacing each read and write with
a call to the runtime library, which can be expensive, thus
calling the logging routine end − start times, we can make
a single call to a logging function for the whole range (start,
end) for arrays A, B, and C. The logging function is opti-
mized to stride through the array, as element size is known.
Assuming that the array element size is S, the cache line size
used by the runtime model is C, and the number of loop it-
erations is N , this will call the logging function dN ∗ C/Se
times. Without this optimization, the logging function is
called N times. If S is a 32-bit integer or float, and C is 32
bytes, this reduces the number of calls eight fold.

This optimization is most useful when we have unit step
functions for the loop induction variable. With a small stride
step function, this may still provide some benefit. A unit
step seems to be the most common case in practice.

However, we have only been able to apply this optimiza-
tion to the last dimension of a multi-dimensional array. For
example, in nested loops for matrix multiplication, the pass
is only able to optimize the accesses to the elements when
consecutive elements are accessed in successive loop itera-
tions. Although one theoretically could hoist an optimal
number of logging operations outside of nested loops, we
haven’t investigated this yet. It is an item we plan to ex-
plore in the future.

5. EVALUATION
We implemented TSA as a compiler pass using the LLVM

compiler framework [4]. Part of our analysis relies on Data
Structure Analysis (DSA) [3]. DSA is a static pointer analy-
sis, and provides the flow insensitive pointer analysis frame-
work for this research. DSA already identifies some memory
locations as thread local, and hence non-escaping.

We are developing an always-on STM runtime library that
enforces deterministic execution and we used this for our
evaluation. For the compiler pass and optimizations, we
used LLVM 3.1. We incorporated CoreDet-like optimiza-
tions including thread escape analysis, successive access op-
timization, and coalescing nearby accesses into single logging
operations.

We evaluated the effectiveness of our techniques as a per-
centage reduction in memory accesses for instrumented code.
The main reason to choose a percentage scale for these data
is that the absolute numbers have a wide variation across
these benchmarks, as they depend on input size and pro-
gram type. A naive instrumentation will instrument 100%
of the memory accesses. The various columns of the table
show the percentage of these accesses reduced when a com-
bination of techniques is applied. The reduction is thus a
cumulative effect of applying all the techniques. The table
entries show the percentage of accesses that did not need
instrumentation due to the applied methods. The following
abbreviations are used for the column headings:

– opt1: CoreDet-like optimizations

– opt2: opt1 + TSA single thread accesses

– opt3: opt1 + TSA read-only accesses

– opt4: opt3 + Loop Invariant Log Motion (LILM)

– opt5: opt4 + MTROM

Benchmark opt1 opt2 opt3 opt4 opt5
blackscholes <1 <1 92.5 92.5 92.5
fft 34.8 34.8 52.4 52.4 52.4
lu 32.7 33.3 33.3 33.3 33.3
radix 30.1 40.0 44.9 63.5 63.5
histogram 33.7 33.7 66.8 66.8 66.8
kmeans <1 1.0 50.6 75.2 75.2
matrix multiply <1 <1 <1 <1 51.1
pca <1 <1 99.8 99.8 99.8
reverse index <1 <1 <1 <1 24.5
string match 23.2 23.2 58.6 58.6 58.6
linear regression 60.7 60.7 62.0 62.0 62.0
Average 19.8 20.8 51.1 55.0 61.8

Table 1: Total access logging reduction as percent
of naive instrumentation.

Table 1 shows the reduction in the number of instrumen-
tation calls to the runtime library with the various opti-
mization techniques as a percentage of naive instrumenta-
tion counts. The first column shows the reduction using
optimization techniques similar to CoreDet. In some cases,
TSA is able to identify the memory points-to set properly.

Benchmark opt1 opt2 opt3 opt4 opt5
blackscholes <1 <1 100.0 100.0 100.0
fft <1 <1 30.9 30.9 30.9
lu <1 <1 <1 <1 <1
radix 15.7 30.9 38.5 61.4 61.4
histogram <1 <1 50.3 50.3 50.3
kmeans <1 <1 50.4 75.1 75.1
matrix multiply <1 <1 <1 <1 51.2
pca <1 <1 99.9 99.9 99.9
reverse index <1 <1 <1 <1 39.3
string match 36.9 36.9 100.0 100.0 100.0
linear regression 87.3 88.2 100.0 100.0 100.0
Average 13.1 14.5 52.0 56.3 64.4

Table 2: Load logging reduction as percent of naive
instrumentation.

Table 2 shows the reduction in dynamic load instrumenta-
tion counts when using the various optimization techniques
as a percentage of naive instrumentation counts.

Our runtime library is still under development; however,
we have promising results for the instrumentation techniques
described in this paper. We included results from the bench-
marks from the PARSEC, SPLASH, and Phoenix suites
that are currently able to compile and run: blackscholes
from PARSEC; fft, lu, and radix from SPLASH; and pca,
histogram, kmeans, linear regression, matrix multiply, his-
togram, kmeans, matrix multiply, pca, reverse index, string match,
linear regression from the Phoenix benchmark suite. Our
observations on the benchmarks evaluated are as follows:

– blackscholes: blackscholes iterates over 4 global read vec-
tors. TSA is able to detect that most of the accesses
are read-only (opt3), and reduces load access logging by
100%. For store accesses, the same array is written by
multiple threads. Without a sophisticated range analysis
to partition the array statically, we cannot eliminate the
store logging operations. But overall, we still achieve a
92.5% logging reduction.

– FFT: In FFT, there is a global array of input time domain
points that is not modified. As the input point set is
global and is not modified, TSA can detect this read-only
accesses, and reduce load counts by 30%.

– lu: In LU, threads modify the input matrix in-place with
complex strides. Our methods do not show significant im-
provement, except for reducing some access tracking that
happens in single threaded mode. LU performs significant
number of accesses with a daxpy method. Our LILM does
not correctly detect this as a vector access. If we avoid
inlining the daxpy function over half of the memory ac-
cesses can be removed. Nevertheless, we did not do this
optimization because we expect to improve the vector de-
tection mechanism.

– radix: radix performs in-place sorting of the keys. We see
some benefit from avoid instrumentation during initial-
ization (opt2), and little benefit from detection read-only
accesses (opt1 or opt5) or MTROM based analysis. LILM
is the most effective technique with 19% reduction in in-
strumented loads. All the techniques combined reduce the
access logging by a cumulative 63%.

– histogram: The threads read values from global data, and
increment counters each time they read a value. Hence,
we see a reduction of 50% in load count, and 33% in total
access count when TSA detects read-only accesses (opt3).
Coalescing of nearby memory accesses helps this case quite
a bit, so opt1 reduces 33% of memory accesses. Also, as
almost all writes are to thread-local variables, gives a very
good savings in number of store logging.

– kmeans: kmeans has a very high load-to-store ratio, stores
being only a small fraction of total accesses. It also uses a
global array of points, so TSA can determine the several
read-only accesses Also, LILM is able to move some of
the loads into the preheaders of two loops, resulting in an
eight-fold logging efficiency improvement, for a 32 byte
cache line size and 4 byte element size. Overall, access
count is reduced by 75%.

– pca This program has two separate threaded regions. In
the mean computation region, it is reading matrix data,
and writing only the means of each row. In the subsequent
threaded region to compute covariance, mean is only read.
Hence, in the second threaded section, both the matrix
data and mean data can be treated as read-only and do
not need instrumentation.

– matrix multiply: This is a classic case of MTROM us-
age (opt5), where the input matrices are not modified at
all during the multiplication process. So, the MTROM
method is able to eliminate some of the loads from the
MTROM memory. Due to weaknesses in pointer analysis,
all accesses could not be traced to mtrom-only heaps. We
are investigating this currently for possible improvements.

– reverse index: A write to null-terminate the end of the
link in a large data set renders that memory read-write,
although it is really MTROM in principle. We modified
the code slightly to avoid this, and carried the length of
the link in the data separately, rather than having a null-
terminated link. This optimization reduced the memory
tracking need for this benchmark by 34% with MTROM

(opt5). Without this modification, MTROM did not pro-
duce significant benefit for this case.

– string match: The baseline CoreDet techniques (opt1) al-
ready optimizes 25% of the accesses. TSA with read-only
(opt3) helps reduce more load accesses. MTROM makes
the load tracking almost unnecessary. Due to a weakness
in the static pointer analysis, we believe the store accesses
weren’t eliminated significantly, and might be improved.

– linear regression: In this case, there are successive loads
of the fields of the same structure. So, CoreDet-like opti-
mizations could reduce load tracking significantly (opt1).
TSA is able to detect all the reads as read-only (opt4) so
opt4 shows 100% load reduction, with an overall 62% log-
ging reduction. There is a significant amount of stores in
this case, which results in smaller reduction in total access
compared to load logging reduction percentage.

With an ideal pointer analysis, TSA with mod-ref analysis
should make the use of MTROM unnecessary. In the eval-
uated benchmarks only matrix multiply and reverse index
benefited from MTROM (opt5). It could have been pos-
sible to further reduce the instrumentation in some other
benchmarks but it may have required changing the code.

As expected, avoiding code initialization (opt2) reduces
overhead, but not significantly. Opt2 avoids code instru-
menting code initialization, but also phases of the execution
with single threaded mode. Nevertheless, in the evaluated
applications it did not happen.

A significant instrumentation reduction is achieved when
TSA is combined with mod-ref analysis to detect read-only
accesses. This technique (opt3) avoids instrumenting over
37% of all the loads.

In some cases, a true data partitioning is needed within
the same contiguous memory segment, such as in parallel
sorting of data as in radix, or modification of common data
as in lu-factorization. These are harder to detect statically
with TSA, and need complex solvers to prove that they are
non-overlapping accesses.

6. RELATED WORK
Recently several proposals have been made to provide de-

terministic execution for traditional multithreaded C and
C++ programs. CoreDet [1] is a compiler and runtime en-
vironment that together enforces deterministic execution for
multithreaded programs even under race conditions among
various threads. CoreDet decomposes the instructions of
threads into manageably sized blocks by instruction count,
which it defines as quanta. It uses multiple techniques to
achieve such determinism. CoreDet also uses some compiler
techniques to reduce its logging overhead, and our frame-
work includes techniques used by CoreDet. CoreDet also
uses the LLVM compiler [4], like our work. The optimiza-
tions that we have proposed in this paper are complementary
to work done for CoreDet and could potentially improve its
performance.

DThreads [5] is another recent work that provides a de-
terministic execution model. In DThreads, threads are im-
plemented as processes and OS memory protection enforces
isolation between threads. Writes to shared memory are pro-
tected, and local copies of entire pages are made on write,
and maintained until the next commit point. DThreads
doesn’t rely on memory access tracking for each access. It

also avoids instrumenting single threaded code, as in our
TSA, by switching between execution modes at runtime.
However, it relies on OS-controlled virtual memory protec-
tion, and switching execution modes at runtime is more dif-
ficult for systems that instrument memory accesses.

Our analysis framework is not just aimed at providing
a deterministic runtime model, but to aid all such systems
focusing on race detection and debug, through rigorous com-
piler support for multi-threaded programs. It works for
general shared memory multi-threading models, so program
memory is not duplicated for each thread. It is also very
useful for log based STMs. In [6], authors argue that STM
overhead is so high that it is merely a research toy. With
our proposed techniques, we believe STMs can become sig-
nificantly more efficient, to make them almost practical.

There has been previous work to reduce STM overhead,
mainly for strongly typed languages. For example, in [7],
the authors describe object ownership in Java to reduce log-
ging operations in STM. [8] also describe escape analysis
for object oriented languages like Java. In [9], authors de-
scribe something similar, called May Happen In Parallel,
that works with java synchronizations. Our analysis is more
rigorous, and is context sensitive to one specific threaded
section. Even if two functions may both be called in paral-
lel, there is no overlap if they are not in the same TS. Our
analysis considers the actual memory regions accessed in
each parallel phase separately. In [10], the authors describe
somewhat similar efforts directed at reducing STM overhead
in the compiler. Our methods are different by nature. While
their method focuses on some optimization specific to code
motion and read-only transactions, we developed a frame-
work for rigorous analysis of the threaded regions for C and
C-like programs.

Many researchers have focused on improving the precision
of pointer analysis for threads. We observe that it is equally
important to consider the modified and referenced proper-
ties of the pointer values. A major theme of our proposal is
to use the precision of points-to relationship in conjunction
with modified-referenced information for each parallelized
segment of a program to reduce memory access tracking re-
quirements.

7. CONCLUSION AND FUTURE WORK
We have presented three techniques: threaded section anal-

ysis, loop invariant log motion, and multithreaded read-only
memory, each of which can be used to reduce instrumen-
tation overhead for deterministic execution systems. Each
technique can be used separately; however, when combined
they reduce instrumentation overhead by an average of 63%
for the benchmarks that we evaluated.

Although we have focused our work on reducing instru-
mentation overhead for deterministic execution systems, the
techniques we have described can be useful for reducing over-
heads in software transactional memory or in data-race de-
tection. Any instrumentation technique requiring instru-
mentation when running in multithreaded mode but not
single-threaded mode could benefit from our proposal.

Deterministic execution has the potential to simplify par-
allel programming, but current proposals (particularly soft-
ware implementations) have significant performance over-
heads. Reducing instrumentation can reduce this overhead
and improve performance, and the techniques we have pre-
sented are a valuable addition to achieving this goal.

8. REFERENCES
[1] Tom Bergan, Owen Anderson, Joseph Devietti, Luis

Ceze, and Dan Grossman, “Coredet: a compiler and
runtime system for deterministic multithreaded
execution,” in Proceedings of the fifteenth edition of
ASPLOS on Architectural support for programming
languages and operating systems, New York, NY,
USA, 2010, ASPLOS ’10, pp. 53–64, ACM.

[2] William Landi, Barbara G. Ryder, and Sean Zhang,
“Interprocedural modification side effect analysis with
pointer aliasing,” in In Proceedings of the SIGPLAN
’93 Conference on Programming Language Design and
Implementation, 1993, pp. 56–67.

[3] Chris Lattner and Vikram Adve, “Automatic Pool
Allocation: Improving Performance by Controlling
Data Structure Layout in the Heap,” in Proceedings of
the 2005 ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI’05),
Chigago, Illinois, June 2005.

[4] http://www.llvm.org, “Low level virtual
machinepointer analysis – a survey,” .

[5] Tongping Liu, Charlie Curtsinger, and Emery D.
Berger, “Dthreads: efficient deterministic
multithreading,” in Proceedings of the Twenty-Third
ACM Symposium on Operating Systems Principles,
New York, NY, USA, 2011, SOSP ’11, pp. 327–336,
ACM.

[6] Calin Cascaval et. al., “Software Transactional
Memory: Why Is It Only a Research Toy?,” in ACM
Queue - The Concurrency Problem, Volume 6 Issue 5,
September 1 2008, pp. 46–58.

[7] Nels E. Beckman, Yoon Phil Kim, Jonathan Aldrich,
and Sven Stork, “Reducing stm overhead with access
permissions,” .

[8] B Blanchet, “Escape analysis for object-oriented
languages: Application to Java,” in In Proc. ACM
SIGPLAN Conf.OOPSLA ÂŠ99.ACM SIGPLAN.
1999, ACM Press.

[9] Clark Verbrugge Lin Li, “A Practical MHP
Information Analysis for Concurrent Java Programs,”
in Lecture Notes in Computer Science, Languages and
Compilers for High Performance Computing, 2005,
vol. 3602, pp. 194–208.

[10] Arie Zilberstein Yehuda Afek, Guy Korland,
“Lowering STM Overhead with Static Analysis,” in
The 23rd International Workshop on Languages and
Compilers for Parallel Computing Proceedings
Springer-Verlag (LNCS), Rice University, Houston,
Texas, USA, October 7 - 9 2010.

