
Department of Computer Engineering,
University of California, Santa Cruz

http://masc.soe.ucsc.edu

Speaker:

Simulating GPGPUs
ESESC Tutorial

Alamelu Sankaranarayanan

1

http://masc.soe.ucsc.edu/

Simulating GPGPUs Alamelu S

Outline

• Background

• GPU Emulation Setup

• GPU Simulation Setup

• Running a GPGPU application

2

Simulating GPGPUs Alamelu S

The Landscape Today

• Heterogeneous Computing : an alternate Paradigm

• GPUs are being increasingly used to augment CPU

cores
• Popularity of programming languages like CUDA / OpenCL

• Application in Computer Vision & Image Processing , Augmented

reality, Big Data, Machine Learning, etc.

3

Simulating GPGPUs Alamelu S

The Landscape Today

• More computational capability with each new GPU
• Increasing processing elements with each new generation

• Tighter coupling of the CPU and GPU
• AMD’s APUs, HSA

• Mobile / Embedded applications
• Emphasis on energy efficiency

• Newer processor architectures like Knights Corner

4

Simulating GPGPUs Alamelu S

Expectations from a simulator

• More computational capability with each new GPU
• Increasing processing elements with each new generation

• Tighter coupling of the CPU and GPU
• AMD’s APUs, HSA

• Mobile / Embedded applications
• Emphasis on energy efficiency

• Newer processor architectures like Knights Corner

• More PEs → More threads → Longer
Simulation Times

• FAST simulators needed!

• Ability to easily vary the architectural
specifications like number of PEs, memory
subsystem configuration, Allowable
threads, Divergence mechanisms etc.

5

Simulating GPGPUs Alamelu S

Expectations from a simulator

• More computational capability with each new GPU
• Increasing processing elements with each new generation

• Tighter coupling of the CPU and GPU
• AMD’s APUs, HSA

• Mobile / Embedded applications
• Emphasis on energy efficiency

• Newer processor architectures like Knights Corner

• Ability to model a heteregeneous
system with both CPUs and GPUs

6

Simulating GPGPUs Alamelu S

Expectations from a simulator

• More computational capability with each new GPU
• Increasing processing elements with each new generation

• Tighter coupling of the CPU and GPU
• AMD’s APUs, HSA

• Mobile / Embedded applications
• Emphasis on energy efficiency

• Newer processor architectures like Knights Corner

• Integrated Power
Model

• Thermal?

7

Simulating GPGPUs Alamelu S

Expectations from a simulator

• More computational capability with each new GPU
• Increasing processing elements with each new generation

• Tighter coupling of the CPU and GPU
• AMD’s APUs, HSA

• Mobile / Embedded applications
• Emphasis on energy efficiency

• Newer processor architectures like Knights Corner

• Flexibility in architectural
description

• Ease of extension

8

Simulating GPGPUs Alamelu S

Available GPGPU Simulators

GPGPU
Simulators

GPGPUSim

Multi2Sim

GPUWattch

GPUSimPow

Ocelot

Key Features

Most Popular, Can model Fermi like
architectures.
Heterogenous simulator, capable of
simulating both OpenMP and OpenCL
threads.
Power model for GPGPUs. Now integrated
with GPGPUSim
Another Power Model, based on
GPGPUSim.
Dynamic JIT compilation framework
translating PTX to run on several backends

SLO
W

9

Simulating GPGPUs Alamelu S

Simulator

Generic Simulators

Interface Application
Binary

Translate the
trace to an IR

TRACE

Manage feeding the
trace to the simulator

Emulator

Timing
Model

IPC
Cache hit

& miss
rates

Power
Model

10

Simulating GPGPUs Alamelu S

SLOW!

Translate the
trace to an IR

Generate a trace
and translate to IR

Simulator

Simulating GPGPUs

Interface GPU
Binary

TRACE

Manage feeding the
trace to the simulator

Emulator

Timing
Model

IPC
Cache hit

& miss
rates

Power
Model

Application
assembly

CodeInterpret assembly and
model the GPU

Behavior

#?!%*#

11

Simulating GPGPUs Alamelu S

Generate a trace
and translate to IR

Emulator

Memory
TRACE

Simulator

How can we make it faster?

Interface CUDA
Binary

TRACE

Timing
Model

IPC
Cache hit

& miss
rates

Power
Model

Modified
GPU

Binary

Interpret assembly and
model the GPU

Behavior Run it
natively on

a GPU

Pre-interpret the
assembly code and

generate translated IR,
save more time

12

Simulating GPGPUs Alamelu S

Generate the trace
for the timing

model

Emulator

Memory
TRACE

Simulator

Simulating GPGPUs with ESESC

Interface CUDA
Binary

TRACE

Timing
Model

IPC
Cache hit

& miss
rates

Power
Model

Modified
CUDA
Binary

Read the pre-translated
PTX informations

Native
Co-execution

13

Simulating GPGPUs Alamelu S

Creating modified binaries

• Purpose
• Avoid mock GPU execution of the application by the

emulator (needed for memory addresses)

• Generate a trace with the memory addresses, per thread.

• Exploit the computational power of the GPGPU, to speed

up simulation.

• Original application behavior should remain

unchanged

14

Simulating GPGPUs Alamelu S

Creating modified binaries

• Challenges
• How can we effectively return the memory addresses per

thread?

• How can we convey the execution path of different threads?

(threads can diverge)

• How can we pass the control back and forth between the

CPU and the GPU?

15

Simulating GPGPUs Alamelu S

“Contaminated” PTX code

Creating modified binaries

CUDA
Application
Assembly

(PTX code)

BasicBlock 1

BasicBlock 2

BasicBlock 3

BasicBlock ‘n’

1. Save the Live out data
(Save State)

2. Save the next BBID
3. Return control back to

the CPU (exit)

1. Load the Live In data
(Restore State)

2. Save the current BBID

1. Save the memory
address after each Mem
operation

16

Simulating GPGPUs Alamelu S

“Contaminated” PTX code

Creating modified binaries

CUDA
Application
Assembly

(PTX code)

BasicBlock 1

BasicBlock 2

BasicBlock 3

BasicBlock ‘n’

Use this “Contaminated” PTX
code to create the modified

application binary.

17

Simulating GPGPUs Alamelu S

Contaminated PTX

Simulating GPGPUs Alamelu S

Contaminated PTX

1. Save the Live out data
(Save State)

2. Save the next BBID
3. Return control back to

the CPU (exit)

1. Load the Live In data
(Restore State)

2. Save the current BBID

Simulating GPGPUs Alamelu S

Pre-translated *.info file
Kernel Name

Trace Statistics

Divergence
information.

20

Simulating GPGPUs Alamelu S

Generate the trace
for the timing

model

Emulator

Memory
TRACE

Simulator

Simulating a GPGPU

Interface CUDA
Binary

TRACE

Timing
Model

IPC
Cache hit

& miss
rates

Power
Model

Contaminated
CUDA
Binary

Read the pre-translated
PTX informations

Native
Co-execution

22

Simulating GPGPUs Alamelu S

Memory
Addresses

Trace Generation

T0 T1 T2 T3 T4 T5 T6 T7

GPU
Emulator

GPGPU
Hardware

Current BBID 1 1 1 1 1 1 1 1
Next BBID 2 2 3 3 2 2 3 3

Done? 0 0 0 0 0 0 0 0

Launch

Return

GPU
Timing
Model

[T0-BB1-]
[T1-BB1-]
[T2-BB1-]
[T3-BB1-]
[T4-BB1-]
[T5-BB1-]
[T6-BB1-]
[T7-BB1-]

23

Simulating GPGPUs Alamelu S

Memory
Addresses

Trace Generation

T0 T1 T2 T3 T4 T5 T6 T7

GPU
Emulator

GPGPU
Hardware

Current BBID 2 2 3 3 2 2 3 3
Next BBID 4 4 4 4 4 4 4 4

Done? 0 0 0 0 0 0 0 0

Relaunch

Return

GPU
Timing
Model

[T0-BB2-]
[T1-BB2-]
[T2-BB3-]
[T3-BB3-]
[T4-BB2-]
[T5-BB2-]
[T6-BB3-]
[T7-BB3-]

24

Simulating GPGPUs Alamelu S

Memory
Addresses

Trace Generation

T0 T1 T2 T3 T4 T5 T6 T7

GPU
Emulator

GPGPU
Hardware

Current BBID 4 4 4 4 4 4 4 4
Next BBID 0 0 0 0 0 0 0 0

Done? 1 1 1 1 1 1 1 1

Relaunch

Return

GPU
Timing
Model

[T0-BB4-]
[T1-BB4-]
[T2-BB4-]
[T3-BB4-]
[T4-BB4-]
[T5-BB4-]
[T6-BB4-]
[T7-BB4-]

Application Complete

25

Simulating GPGPUs Alamelu S

Block (0,0) Block (1,0)

Block (0,1) Block (1,1)

Grid 1

A Modern GPGPU

Thread

Thread Block

Grid 0
Block (0,0) Block (1,0)

Block (0,1) Block (1,1)

Per Thread
Local Memory

Per-Block
Shared Memory

Global
Memory

26

Simulating GPGPUs Alamelu S

A Modern GPGPU
SM3Register File

Lane 0 Lane 1 Lane
31

Coalescing

Scratch Pad DL1

SM2Register File

Lane 0 Lane 1 Lane
31

Coalescing

Scratch Pad DL1

SM1Register File

Lane 0 Lane 1 Lane
31

Coalescing

Scratch Pad DL1

SM0

Lane
0

Lane
1

Lane
31

… … …

FP
Unit

Int
Unit

Dispatch
Ports

Operand
Collector

Result
Queue

A Single Processing element
(Lane)

Scratch
Pad

Coalescing

DL1

To lower levels
L2

Register File

ThreadThread Thread

27

Simulating GPGPUs Alamelu S

Timing Model

• Each SM is modeled as a

group of little cores (lanes)

• Based on the in-order core

modeled in ESESC

• Each lane can be configured to

have the same capabilities as a

regular in-order core.

• Graphic specific blocks

(rasterizer, clipping) are not

modeled

To lower levels

SM3
Register File

Lane
0

Lane
1

Lane
31

Coalescing

Scratch
Pad DL1

SM2
Register File

Lane
0

Lane
1

Lane
31

Coalescing

Scratch
Pad DL1

SM1
Register File

Lane
0

Lane
1

Lane
31

Coalescing

Scratch
Pad DL1

SM0
Register File

Lane
0

Lane
1

Lane
31

Coalescing

Scratch
Pad DL1

L2

… … …

28

Simulating GPGPUs Alamelu S

Timing Model

• The trace generator / manager

for ESESC models

• Barriers

• Execution strategies

• Divergence mechanisms

• Serial execution
• Post Dominator convergence [1]
• Simultaneous Branch

Interleaving [2]
To lower levels

SM3
Register File

Lane
0

Lane
1

Lane
31

Coalescing

Scratch
Pad DL1

SM2
Register File

Lane
0

Lane
1

Lane
31

Coalescing

Scratch
Pad DL1

SM1
Register File

Lane
0

Lane
1

Lane
31

Coalescing

Scratch
Pad DL1

SM0
Register File

Lane
0

Lane
1

Lane
31

Coalescing

Scratch
Pad DL1

L2

… … …

1. Fung, Wilson WL, et al. "Dynamic warp formation and scheduling for efficient GPU control flow." Proceedings of the 40th Annual IEEE/ACM
International Symposium on Microarchitecture. IEEE Computer Society, 2007.

2. Brunie, Nicolas, Sylvain Collange, and Gregory Diamos. "Simultaneous branch and warp interweaving for sustained GPU
performance." ACM SIGARCH Computer Architecture News. Vol. 40. No. 3. IEEE Computer Society, 2012.

29

Simulating GPGPUs Alamelu S

Timing Model

• Memory Hierarchy is defined

and used just as for CPU

simulations

• Extensions to indicate if an

address is a shared or global

address

• Extensions to indicate which

thread or warp a memory

address belongsTo lower levels

SM3
Register File

Lane
0

Lane
1

Lane
31

Coalescing

Scratch
Pad DL1

SM2
Register File

Lane
0

Lane
1

Lane
31

Coalescing

Scratch
Pad DL1

SM1
Register File

Lane
0

Lane
1

Lane
31

Coalescing

Scratch
Pad DL1

SM0
Register File

Lane
0

Lane
1

Lane
31

Coalescing

Scratch
Pad DL1

L2

… … …

30

Simulating GPGPUs Alamelu S

Software architecture

Modified
Binary

• InstDoctor to contaminate PTX
• Custom compilation flow using NVCC

Interface
ESESC

• GPUInterface
• Modifications to QEMU

Trace
Mgmt

• GPUThreadManager
• GPUEmulInterface

Timing/Power
Model

• GPUSMProcessor
• gpu.cpp
• Existing ESESC infrastructure

31

Simulating GPGPUs Alamelu S

Em
ul

at
or

Modified
Binary

Interface

Trace
Generation

Software architecture

To lower levels

SM3
Register File

Lane
0

Lane
1

Lane
31

Coalescing

Scratch
Pad DL1

SM2
Register File

Lane
0

Lane
1

Lane
31

Coalescing

Scratch
Pad DL1

SM1
Register File

Lane
0

Lane
1

Lane
31

Coalescing

Scratch
Pad DL1

SM0
Register File

Lane
0

Lane
1

Lane
31

Coalescing

Scratch
Pad DL1

… … …

L2

GPUInterface

GPUThreadManager

GPUEmulInterface

32

Simulating GPGPUs Alamelu S

Em
ul

at
or

Modified
Binary

Interface

Trace
Generation

Software architecture

To lower levels

SM3
Register File

Lane
0

Lane
1

Lane
31

Coalescing

Scratch
Pad DL1

SM2
Register File

Lane
0

Lane
1

Lane
31

Coalescing

Scratch
Pad DL1

SM1
Register File

Lane
0

Lane
1

Lane
31

Coalescing

Scratch
Pad DL1

SM0
Register File

Lane
0

Lane
1

Lane
31

Coalescing

Scratch
Pad DL1

… … …

L2

GPUSMProcessor

CacheCacheCache

33

Simulating GPGPUs Alamelu S

Em
ul

at
or

Software architecture

To lower levels

SM3
Register File

Lane
0

Lane
1

Lane
31

Coalescing

Scratch
Pad DL1

SM2
Register File

Lane
0

Lane
1

Lane
31

Coalescing

Scratch
Pad DL1

SM1
Register File

Lane
0

Lane
1

Lane
31

Coalescing

Scratch
Pad DL1

SM0
Register File

Lane
0

Lane
1

Lane
31

Coalescing

Scratch
Pad DL1

… … …

L2

Power
Model

gpu.cpp

Modified
Binary

Interface

Trace
Generation

34

Simulating GPGPUs Alamelu S

Em
ul

at
or

Software architecture

To lower levels

SM3
Register File

Lane
0

Lane
1

Lane
31

Coalescing

Scratch
Pad DL1

SM2
Register File

Lane
0

Lane
1

Lane
31

Coalescing

Scratch
Pad DL1

SM1
Register File

Lane
0

Lane
1

Lane
31

Coalescing

Scratch
Pad DL1

SM0
Register File

Lane
0

Lane
1

Lane
31

Coalescing

Scratch
Pad DL1

… … …

L2

Power
Model

gpu.cpp

Modified
Binary

Interface

Trace
Generation

GPUSMProcessor

CacheCacheCache

GPUInterface

GPUThreadManager

GPUEmulInterface

35

Simulating GPGPUs Alamelu S

• Step 0 : System requirements
• A desktop with a GPGPU

• CUDA version 3.2 installed

• Last tested with driver version : 304.51

• All other packages needed by ESESC
• An ARM machine to compile your own contaminated binary

• Not needed at the moment, since pre-built binaries will be provided

> nvcc –version
nvcc: NVIDIA (R) Cuda compiler driver
Copyright (c) 2005-2010 NVIDIA Corporation
Built on Wed_Sep__8_17:12:45_PDT_2010
Cuda compilation tools, release 3.2, V0.2.1221

Running a GPGPU application

> nvidia-smi

Tue Jun 10 06:53:20 2014
+--+
| NVIDIA-SMI 4.304.51 Driver Version: 304.51 |
|-------------------------------+----------------------+----------------------+
| GPU Name | Bus-Id Disp. | Volatile Uncorr. ECC |
| Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. |
|===============================+======================+======================|
| 0 GeForce GTX 480 | 0000:01:00.0 N/A | N/A |
| 44% 46C N/A N/A / N/A | 4% 60MB / 1535MB | N/A Default |
+-------------------------------+----------------------+----------------------+

+---+
| Compute processes: GPU Memory |
| GPU PID Process name Usage |
|===|
| 0 Not Supported |
+---+

36

Simulating GPGPUs Alamelu S

Running a GPGPU application

• Step 1 : Creating a contaminated binary
• Code cleanup in progress, detailed instructions will be made

available soon after.

• A few contaminated binaries will be provided for now.

37

Simulating GPGPUs Alamelu S

Running a GPGPU application

• Step 2: Compiling esesc.
• Need two additional flags

• Enable 32 bit mode

• Enable GPU mode (link with CUDA libraries)

• Command to build in Relase Mode

> cmake
-DCMAKE_HOST_ARCH=i386
-DENABLE_CUDA=1
~/projs/esesc

38

Simulating GPGPUs Alamelu S

Running a GPGPU application

• Step 3 : Configure esesc.conf
Select simulated core type. Defined in simu.conf
coreType = 'tradCORE'
#coreType = 'scooreCORE'
SMcoreType = 'gpuCORE'

Sampling mode
samplerSel = "TASS"
gpusampler = "GPUSpacialMode"

NOTE! New coretype for GPGPU

NOTE! Sampling?

Set the correct number of processors
cpuemul[0] = 'QEMUSectionCPU'
cpuemul[1:4] = 'QEMUSectionGPU'

cpusimu[0] = "$(coreType)"
cpusimu[1:4] = "$(SMcoreType)"

SP_PER_SM = 32

NOTE! Number of SMs

NOTE! Number of Lanes

NOTE! Section where
additional GPU

parameters are specified

39

Simulating GPGPUs Alamelu S

Running a GPGPU application

• Step 3 : Configure esesc.conf
benchName = "-s 8192000 kernels/bfs kernels/graph4096.txt"
infofile = "kernels/bfs.info"
reportFile = 'gpu_bfs'
MAXTHREADS = 1024

enablePower = true

[GPUSpacialMode]
type = "GPUSpacial"
nMaxThreads = $(MAXTHREADS)
nInstSkip = 0
nInstMax = 1e14

NOTE! Pre-translated PTX

NOTE! Special Sampler for GPU

NOTE! Selective
execution of threads

40

Simulating GPGPUs Alamelu S

Sampling, for GPGPUs?

• GPGPU applications are largely homogeneous

• Do we need to execute and simulate all the

threads?

• Use “MAXTHREADS” to simulate the first

“$(MAXTHREADS)” threads.
• The others are executed natively on hardware (for correct execution)

• Extract significant speedup!
• Need to profile applications to see how much we can skip simulating

41

Simulating GPGPUs Alamelu S

Running a GPGPU application

• Step 4 : Configure simu.conf (if needed)
[gpuCORE]
sp_per_sm = $(SP_PER_SM) #needed to instantiate the GPU SM

#Processor
areaFactor = 2 # Area in relation with alpha264 EV6
issueWrongPath = false
fetchWidth = $(SP_PER_SM)
instQueueSize = $(SP_PER_SM)*2
inorder = true
throttlingRatio = 2.0
issueWidth = $(SP_PER_SM)
retireWidth = $(SP_PER_SM)
decodeDelay = 3*2
renameDelay = 2*2
.
.
.

42

Simulating GPGPUs Alamelu S

Running a GPGPU application

• Step 4 : Configure simu.conf (if needed)

43

Simulating GPGPUs Alamelu S

Running a GPGPU application

• Step 3 : ./esesc

44

Simulating GPGPUs Alamelu S

Sample Report

45

Simulating GPGPUs Alamelu S

Roadmap

• Still in an early stage.
• Code cleanup
• Update the compilation flow to more recent versions of
CUDA

• Add support for newer features released with newer CUDA versions.

• Validation
• Performance
• Power

46

Simulating GPGPUs Alamelu S

Summary

• ESESC provides a fully customizable platform to
model GPGPUs

• One of the key differentiators is the enormous
speedups we achieve with techniques like native
co-execution and selective thread execution

• Integrated timing and power model

• Very early stages, but expect to release a stable
version in the coming months.

47

Simulating GPGPUs Alamelu S

Questions?

ESESC Mailing List
esesc@googlegroups.com

GPU Specific questions
alamelu <at> soe <dot> ucsc <dot> edu

48

mailto:esesc@googlegroups.com
mailto:alamelu@soe.ucsc.edu

Simulating GPGPUs Alamelu S

Acknowledgements

• Dr José Luis Briz Velasco
• Profesor Titular

Associate Professor Computer Architecture and Technology Depto. de Informática
e Ingeniería de Sistemas (DIIS) Escuela de Ingeniería y Arquitectura - University
of Zaragoza (UZ)
briz@unizar.es

• Dr Ehsan K. Ardestani
ehsanardestani@gmail.com

49

http://diis.unizar.es/
http://eina.unizar.es/
http://www.unizar.es/

Simulating GPGPUs Alamelu S

Backup Slides

50

Simulating GPGPUs Alamelu S

Backup 1 : Speedups

51

GPGPU
Simulators

GPGPUSim [2013]

Multi2Sim

Slowdown
compared to Native

90000 (1350s)[1]

8700 (functional)
44000 (arch simulation)[1]

51

Simulating GPGPUs Alamelu S

Backup 2 : List of available
contaminated benchmarks

52

Benchmark Benchmark
Suite #Threads

BACKPROP 1048576
BFS 1000000
CFD 97152
HOTSPOT 1893376
KMEANS 495616
LEUKOCYTE 104296

1. John A. Stratton, Christopher Rodrigues, I-Jui Sung, Nady Obeid,vLi-Wen Chang, Nasser Anssari, Geng Daniel Liu, Wen-mei W. Hwu
IMPACT Technical Report, IMPACT-12-01, University of Illinois, at Urbana-Champaign, March 2012

2. Shuai Che, Michael Boyer, Jiayuan Meng, David Tarjan, Jeremy W. Sheaffer, Sang-Ha Lee, and Kevin Skadron. 2009. Rodinia: A benchmark
suite for heterogeneous computing. In Proceedings of the 2009 IEEE International Symposium on Workload Characterization (IISWC)(IISWC
'09). IEEE Computer Society, Washington, DC, USA, 44-54. DOI=10.1109/IISWC.2009.5306797 http://dx.doi.org/10.1109/IISWC.2009.5306797

52

	Simulating GPGPUs �ESESC Tutorial
	Outline
	The Landscape Today
	The Landscape Today
	Expectations from a simulator
	Expectations from a simulator
	Expectations from a simulator
	Expectations from a simulator
	Available GPGPU Simulators
	Generic Simulators
	Simulating GPGPUs
	How can we make it faster?
	Simulating GPGPUs with ESESC
	Creating modified binaries
	Creating modified binaries
	Creating modified binaries
	Creating modified binaries
	Contaminated PTX
	Contaminated PTX
	Pre-translated *.info file
	Simulating a GPGPU
	Trace Generation
	Trace Generation
	Trace Generation
	A Modern GPGPU
	A Modern GPGPU
	Timing Model
	Timing Model
	Timing Model
	Software architecture
	Software architecture
	Software architecture
	Software architecture
	Software architecture
	Running a GPGPU application
	Running a GPGPU application
	Running a GPGPU application
	Running a GPGPU application
	Running a GPGPU application
	Sampling, for GPGPUs?
	Running a GPGPU application
	Running a GPGPU application
	Running a GPGPU application
	Sample Report
	Roadmap
	Summary
	Questions?
	Acknowledgements
	Backup Slides
	Backup 1 : Speedups
	Backup 2 : List of available contaminated benchmarks

