Thermal Model ESESC Tutorial

Speaker: Elnaz Ebrahimi

ESESC Architecture Santa

Department of Computer Engineering, University of California, Santa Cruz <u>http://masc.soe.ucsc.edu</u>

Thermal Model

You will learn: High level view of ESESC thermal model How to setup and run the thermal model How to generate a new floorplan How to generate a heatmap

Thermal Model

Outline

Thermal Model Running Thermal Model (Demo 1) Changing the Floorplan Running Thermal Floorplanner (Demo 2) Enabling Thermal Map Graphics

Thermal Model

ESESC

Thermal Model

Elnaz Ebrahimi

4

Thermal Model

A Modified version of SescTherm [1]
Thermal characterization such as scaling leakage based on
Temperature
Device Properties

[1] J. N.-Battilana and J. Renau, "SOI, Interconnect, Package, and Mainboard Thermal Characterization," in Proceedings of the 14th ACM/IEEE International Symposium on Low Power Electronics and Design (ISLPED), 2009, pp. 327–330.

Thermal Model

SescTherm.cppesesc/pwth/libsesctherm/SescTherm.cpp

Computes the temperature of floorplan blocks
Dumps temperature trace per floorplan block

ThermTrace.cppesesc/pwth/libsesctherm/ThermTrace.cpp

Reads floorplan mapping
Reads energy numbers
Scales leakage based on temperature

Thermal Model

Elnaz Ebrahimi

7

ThermModel.cppesesc/pwth/libsesctherm/ThermModel.cpp

- Extracts layer information from pwth.conf
- Partitions the floorplan
- Creates solution matrices
- Re-computes material properties

ChipFloorplan.cpp
 esesc/pwth/libsesctherm/ChipFloorplan.cpp

•Reads and processes the floorplan based on floorplan information specified in pwth.conf

Thermal Model

Thermal Model Requirements

- Power
- Performance
- Floorplan information and configuration
- Package information
- Thermal management policy

Thermal Model

Thermal Model Config. File

pwth.conf

- Floorplan
- Layers (transistor, interconnect,...)
- Model config (temp and equation solver)
- Cooling Solution (air, oil)
- Package Configuration/Dimension
- Graphical thermal map
- Other layer configurations

Outline

Thermal Model Running Thermal Model (Demo 1) Changing the Floorplan Running Thermal Floorplanner (Demo 2) Enabling Thermal Map Graphics

Thermal Model

Main Thermal Settings

•ln ~/build/release/run •esesc.conf •enablePower = true •enableTherm = true •thermTT = 373 •pwth.conf •enableTurbo = false •dumpPower = true #dump leakage

Thermal Model

Main Thermal Settings

•pwth.conf

- •[SescTherm] #section
- •floorplan[0] = `floorplan_1C'
- •layoutDescr[0] = `layoutDescr_1C'

•flp.conf

- •floorplan_1C
- •layoutDescr_1C

Thermal Model

Thermal Model Output Files

 Thermal model related output files in ~/build/release/run ESESC configurations and statistics •esesc_iscademo.???? Temperature trace •temp_esesc_iscademo.???? Total Power •totalpTh_esesc_iscademo.????

Thermal Model

Thermal Model Reports

•Overall chip thermal related statistics

- Dynamic power
- Leakage Power
- Gradient Temperature Across Chip
- Average Temperature
- Maximum Temperature
- etc.

•Temperature per block

Total dynamic + scaled leakage power

Demo 1

 Assume floorplanning and device parameters are set Enable power and thermal Setup thermal throttling •Full thermal run with Crafty benchmark Extract thermal statistics • Explain thermal related output files

Thermal Model

Outline

Thermal Model
Running Thermal Model (Demo 1)
Changing the Floorplan
Running Thermal Floorplanner (Demo 2)
Enabling Thermal Map Graphics

Thermal Model

Floorplan Tool

Thermal Model

Outline

Thermal Model
Running Thermal Model (Demo 1)
Changing the Floorplan
Running Thermal Floorplanner (Demo 2)
Enabling Thermal Map Graphics

Thermal Model

DEMO 2

- •Change core config.
- •Running floorplan tool for the new core config.
- Check the new floorplan settings
 In ~/build/release/run/pwth.conf
 In ~/build/release/run/flp.conf

Outline

Thermal Model Running Thermal Model (Demo 1) Changing the Floorplan Running Thermal Floorplanner (Demo 2) Enabling Thermal Map Graphics

Thermal Model

Temperature Map Graphics

In pwth.conf • [graphics_config] Enable thermal map image dump •enableGraphics = true Set the image resolution •resolution_x = $1024 # 1440 \times 900$ \cdot resolution_y = 768 Link the floorplan layer •grpahics_floorplan_layer = 2

Thermal Model

Temperature Map Graphics

Convert the floorplan thermal map snapshots to gif
In ~/build/release/run
convert -delay 0.3
lcomp-NORM_layer-2_smpltype-CUR_0.*

Thermal Model

Thermal Map Example

Thermal Model

Elnaz Ebrahimi

26

Summary

You will learn: High level view of ESESC thermal model How to setup and run the thermal model How to generate a new floorplan How to generate a heatmap

Thermal Model

Backup Slides

Thermal Model

Floorplan Tool References

[2] Ardestani, E.K.; Ziabari, A.; Shakouri, Ali; Renau, J., "Enabling power density and thermal-aware floorplanning," *Semiconductor Thermal Measurement and Management Symposium (SEMI-THERM), 2012 28th Annual IEEE*, vol., no., pp.302,307, 18-22 March 2012

[3] Hung, W. -L; Xie, Y.; Vijaykrishnan, N.; Addo-Quaye, C.; Theocharides, T.; Irwin, M.J., "Thermal-aware floorplanning using genetic algorithms," *Quality of Electronic Design, 2005. ISQED 2005. Sixth International Symposium on*, vol., no., pp.634,639, 21-23 March 2005

Thermal Model

Generate Floorplan

•floorplan.rb

- Change power, thermal, refloorplan flags
- Run esesc to generate block connectivity and power estimation
- •Run hotfloorplan to generate floorplan
- Convert the format for pwth.conf
- Update pwth.conf with new floorplan
- Update esesc.conf with floorplan link

•Change single core to dual core •esesc.conf

- •cpuemul[0:1] = `QEMUSectionCPU'
- •cpusim [0:1] = "\$(coreType)"

In build directory

•~/build/release/

•Run

•make floorplan

Thermal Model

In run directory
~/build/release/run

• Run

~/projs/esesc/conf/scripts/floorplan.rb
 BuildDir_Path SrcDir_Path RunDir_Path
 NameMangle

Thermal Model

Example command:

~/projs/esesc/conf/scripts/floo rplan.rb

~/projs/build/release/
~/projs/esesc/
~/projs/build/release/run/
2C

Thermal Model

•New links in pwth.conf
•floorplan[0] = `floorplan2C'

•layoutDescr[0] = `layoutDescr2C'

•New layout/floorplan in flp.conf

- •[layoutDescr2C] ...
- •[floorplan2C] ...

•New floorplan also saved in new.flp

Thermal Model

•Defining chip layers •Add or define layers in pwth.conf [SescTherm] layer[0]= `mainboard0' #mainboard layer[1]= `interconnect0' #metal layer[2]= `die_transistor0' #transistor layer[3]= `bulk_silicon0' #substrate layer[4]= `air_layer0' #air

Thermal Model

- - •floorplan = 2 #layer index
 - $\bullet lock_temp = -1$
- •[air_layer0]
 - •lock_temp = 25+273.15 #ambient T
 - •floorplan = -1

•floorplan = -1

• for all layers except die_transistor0

Thermal Model

- Package specific configuration sections
 <u>Model configuration</u>
 - •Model = `model_config'
 - Thermal map image dump
 Graphics = `graphics_config'
 - Air or oil cooling solution

 <u>Cooling = `air_cooling_config</u>
 - Chip and package size and dimensions
 Chip = `chip_config'

• [model_config] • matrix solver • useRK4 = true • initial temperature • initialTemp = 35+273.15 • ambient temperature • ambientTemp = 35+273.15

Thermal Model

•[chip_config]

- Chip dimensions: based on based on floorplan information (x, y)
 - •chip_width
 - •chip_height
 - •chip_thickness
- Package size: architectural decision
 - •package_height
 - •package_width
 - •package_thickness

Cooling solutions

- •[air_cooling_config]
- •[oil_cooling_config]
- Related code
 - •esesc/pwth/libsesctherm/ChipMaterial.cpp
- For other pwth.conf configurations
 Compare with default pwth.conf settings
 Check source code

Turbo Mode

• Frequency changes based on temperature

~/projs/esesc/simu/libsampler/PowerModel.cpp
int PowerModel::updateFreqTurbo()

```
// Decide on the actual turbo frequency based on temperature
if (maxT > K(100)) {
  turboFreq = getFreq();
  state = 4;
} else if (maxT > K(90)) {
  turboFreq = maxF - 3*(maxF - getFreq())/4;
  state = 3;
} else if (maxT > K(80)) {
  turboFreq = maxF - 2*(maxF - getFreq())/4;
  state = 2;
} else ....
```

Thermal Model

